Dr. Stephanie Stevenson is a meteorologist at the NOAA/National Weather Service National Hurricane Center (NHC) in Miami. Through her ground-breaking research and efforts, new applications using GOES-R Geostationary Lightning Mapper (GLM) data are being used as guidance for NHC forecasts as well as in media and decision-support briefings. With 2023’s Atlantic Hurricane Season officially underway, NESDIS recently interviewed Dr. Stevenson to learn more about her research and what it means for the future of hurricane tracking and forecasting.
Solar Cycle 25 has ramped up much faster than scientists predicted producing more sunspots and eruptions than experts had forecast. Tracking and predicting the sun’s solar cycles gives a rough idea of the frequency of space weather storms of all types – from radio blackouts to geomagnetic storms and solar radiation storms – and it’s used by many industries to gauge the potential impact of space weather on Earth. A new time lapse animation shows GOES-16 Solar Ultraviolet Imagery (SUVI) during Solar Cycle 25 from December 2019 through April 2023 alongside the progression of the number of sunspots. SUVI images the solar corona in six different extreme ultraviolet wavelengths. NOAA’s space weather forecasters use SUVI imagery to issue alerts and watches for space weather storms.
The Cooperative Institute of Meteorological Satellite Studies at the University of Wisconsin-Madison announced the winning projects for the 2023 GOES Virtual Science Fair. During the virtual science fair, middle and high school students (grades 6-12) worked with GOES satellite data to investigate weather and natural hazards and conveyed their projects with scientific posters. High school submissions also required a short video where students explain their project, similar to a poster session at a professional conference. By offering authentic STEM (science, technology, engineering and math) engagement to a pre-college audience, this activity serves as a pipeline to society’s scientists of tomorrow and NOAA’s future workforce
Since May 15, 2023, NOAA satellites have been watching Mexico’s Popocatépetl Volcano exhibit activity ranging from tremors to spewing ash. Popocatépetl, Aztec for smoking mountain, is located 45 miles southeast of Mexico City. With about 25 million people living within 60 miles of Popocatépetl, it is considered one of the most dangerous volcanoes in the world. Geostationary satellites, like GOES-16 and GOES-18, are the primary tool for monitoring volcanic clouds. GOES-16 observed Popocatépetl’s ash plumes in near real-time and monitored hazardous sulfur dioxide from the volcano. JPSS satellites measured smoke, ash and dust from the volcano. Together, NOAA satellites help monitor volcanoes and the risks they pose.
In early May 2023, fires ignited across western Canada due to unusually hot and dry weather. NOAA satellites watched as the fires raged, burning about one million acres. GOES-18 monitored the spread of the fires and smoke across the region. The ABI instrument on GOES-18 observed the formation of pyrocumulonimbus clouds from intense fires in Alberta. The data collected by NOAA satellites help responders forecast what areas will be impacted and manage the wildfires. As the Northern Hemisphere heats up, NOAA satellites will keep watch for wildfires.
Today, NOAA awarded the Geostationary Ground Sustainment Services (GGSS) contract to L3Harris Technologies Inc. of Palm Bay, Florida. The five-year Indefinite Delivery/Indefinite Quantity (IDIQ) contract will provide sustainment services to extend the functions of the ground system that supports NOAA’s GOES-R Series. This contract provides for an indefinite quantity of supplies and services during the contract ordering period from May 11, 2023, through May 10, 2028. Individual supplies and service requirements will be defined at the task order level. The maximum value of this IDIQ contract is $275,169,157. The work will be performed at NOAA facilities located in Suitland, Maryland; College Park, Maryland; Wallops Island, Virginia; and Fairmont, West Virginia; and at the L3Harris facility in Melbourne, Florida.
As spring heads toward summer, NOAA satellites are ready for this year’s upcoming hurricane season. NOAA satellites monitor the conditions that spawn hurricanes and provide early warning that a storm is forming. GOES East and West monitor hurricanes as they develop and track their movements in near real-time. GOES satellites measure the temperature of cloud tops and the amount of water vapor present within a system, and also provide wind estimates. They also monitor lightning within a storm. NOAA satellites also aid emergency response to landfalling hurricanes by mapping the extent, damage and duration of flood events. Together, NOAA satellites are prepared to provide vital information to forecasters and help protect life and property throughout the 2023 hurricane season and beyond.
GOES-U, the fourth and final satellite in NOAA’s GOES-R Series, recently completed a successful test deployment of its solar array to ensure it will function properly in space. This critical test verified that the satellite's large, five-panel solar array — which is folded up when the satellite is launched — will properly deploy when GOES-U reaches geostationary orbit. GOES-U’s solar array will convert energy from the sun into electricity to power the entire satellite, including the instruments, computers, data processors, sensors, and telecommunications equipment. GOES-U is scheduled to launch in 2024.
On April 21, 2023, NOAA satellites detected a coronal mass ejection erupting from the sun, which hurled plasma at two million miles per hour toward Earth. This eruption produced a geomagnetic storm on Earth. GOES-16’s Solar Ultraviolet Imager (SUVI) instrument observed the event as it occurred, while the DSCOVR satellite measured the solar winds the storm produced. This allowed NOAA to issue warnings for possible impacts from the storm. Geomagnetic storms can affect electrical grids, spacecraft, radio frequencies, GPS signals, and astronauts in space. On April 23, the particles reached Earth’s upper atmosphere and caused an aurora in both the Northern and Southern Hemispheres. This is the third severe geomagnetic storm since Solar Cycle 25 began in 2019. As the sun’s activity continues to ramp up, NOAA satellites will be watching for hazardous space weather.
Since 1970, NOAA satellites have been monitoring Earth’s weather, environment, oceans, and climate. This Earth Day, we have a lot to celebrate. Over the past year, NOAA has added two new satellites to its Earth-observing fleet and contributed an instrument to a mission that will help us have a better understanding of Earth’s physical and biological environment. On Earth Day, we celebrate the critical information NOAA satellites provide to help us stay safe and the beautiful imagery they share of our planet. They see it all: hurricanes, severe thunderstorms, lightning, fires, dust storms, smoke, fog, volcanic eruptions, vegetation, snow and ice cover, flooding, sea and land surface temperature, ocean health and more. They can even track ship traffic and power outages. At NOAA, each day is Earth Day.
The GOES-R/GeoXO quarterly newsletter for January – March 2023 is now available. 2023 is off to an exciting start! We are just a little over a year away from the GOES-U launch, the final launch for the GOES-R Series. GOES-U completed mechanical environments testing and will next undergo electromagnetic interference/electromagnetic compatibility testing. We held our first GOES-R summit since 2019 and had the opportunity to collaborate in person with our colleagues from across the country. The newly operational GOES-18 satellite monitored a deluge of atmospheric rivers affecting the West Coast and an increasingly active sun. On GeoXO, we took our first step into implementation, with the award of the development contract for the imager, the primary instrument on our next-generation satellite system.
Beginning on March 24, 2023, NOAA satellites monitored severe storms that caused widespread damage from Texas to the Mid-Atlantic. The storms produced high winds, hail, flooding, and tornadoes. High winds and 38 tornadoes were reported when the storms moved through Mississippi, Alabama and Tennessee. The town of Rolling Fork, Mississippi was struck by an EF-4 tornado that killed 26 people in total, injured dozens more, and damaged buildings and utilities. GOES-16 (GOES East) monitored the storm in near real-time as it barreled across the Southeast.
After tracking a series of atmospheric rivers that have drenched California this year, NOAA satellites monitored the latest storm to begin impact the state on Mar. 19, 2023. Rain and snow triggered flash flooding, caused numerous evacuations and left over 350,000 without power. The atmospheric river fueled a mid-latitude cyclone that led to the formation of a hurricane-like eye when two low pressure areas converged over San Francisco. NOAA satellites provided vital information about airborne moisture for more accurate weather forecasts and to predict flood risks and manage water resources.
Since mid-February 2023, winter weather has impacted the continental U.S. from California to Maine. In Southern California, the storm brought blizzard conditions to the San Bernardino and San Gabriel mountains as well as heavy rainfall to lower elevations. As the storm system continued eastward, snow and driving winds caused road closures and drifting snow across the Plains. Further south in Kansas and Oklahoma, tornadoes downed power lines, damaged property, and caused injuries. Additional tornadoes were reported in central and northeastern Illinois. The storm also brought heavy snow to the Northeast. NOAA satellites provided complementary measurements for a complete picture of this monumental storm and played a crucial role in tracking the storms across the U.S., alerting those in harm’s way.
On Feb. 21, 2023, Tropical Cyclone Freddy made landfall on Madagascar. Freddy formed on Feb. 5 near Indonesia and trekked more than 4,000 miles before hitting Madagascar. Freddy is one of only four storms on record to cross the Indian Ocean from east to west. It is also the first in the Southern Hemisphere to undergo four separate rounds of rapid intensification. At its strongest, Freddy had maximum sustained winds of more than 160 miles per hour, equivalent to a Category 5 hurricane. NOAA satellites and those from our international partners monitored the storm as it traversed the Indian Ocean and made landfall in Madagascar.
At least 231 wildfires have been blazing through south-central Chile since Feb. 3, 2023. The region is experiencing a “mega drought” with a decade-long period of dry weather. NOAA satellites are monitoring the fires as hot and dry weather persists. As of Feb. 8, 231 fires have burned more than 741,315 acres of land, making it the second worst year for acreage burned in Chile. GOES-16 and GOES-18 observed the movement of smoke from the fires in near-real time, while identifying new fires. The satellites also help determine a fire’s size and temperature. NOAA-20 and Suomi NPP provide detailed information on fire conditions. The satellites can detect smaller and lower-temperature fires and track wildfires in remote regions. Together, NOAA satellites provide critical and timely information used by fire crews, first responders and air traffic controllers.
We’re spreading the love again this Valentine's Day with a new collection of satellite-themed holiday cards. Circulate and celebrate with us by sharing these cards with your Earth-bound sweetie! The sentiment GOES a long way. Download the Valentines.
On Jan. 25, 2023, NOAA satellites captured an unusually long and long-lived rope cloud produced by a cold front over the Gulf of Mexico. A rope cloud is a very long, narrow, rope-like band of cumulus cloud formations. Generally associated with a cold front or a land-sea breeze front, rope clouds tend to form at the dividing line between cooler and warmer air. In this case, the rush of cool, dense air from the cold front pushed the warm, maritime air from the Gulf of Mexico upward, allowing water vapor to condense and the cloud to form. Satellite imagery can capture rope clouds, indicating a potentially changing weather pattern.
From late Dec. 2022 into Jan. 2023, a series of nine “atmospheric rivers” dumped a record amount of rain and mountain snow across the western U.S. and Canada, hitting California particularly hard. More than 32 trillion gallons of water rained down across the state, and the moisture also pushed into much of the Intermountain West. The San Francisco Bay area experienced its wettest three-week period in 161 years. Atmospheric rivers are long, narrow belts of moisture that move through the atmosphere. They can deliver tremendous amounts of rain, and high-elevation snow. This deluge of rain can provide relief for drought-stricken areas but also trigger flash flooding and mudslides. NOAA satellites help forecast these rivers in the sky and monitor the weather conditions they bring.
NOAA satellites, which are crucial in weather and climate forecasts, helped rescue 397 people from potentially life-threatening situations throughout the U.S. and its surrounding waters in 2022. NOAA’s polar-orbiting and geostationary satellites are part of the global Search and Rescue Satellite Aided Tracking system, or COSPAS-SARSAT, which uses a network of U.S. and international spacecraft to detect and locate distress signals sent from emergency beacons from aircraft, boats and handheld Personal Locator Beacons (PLBs) anywhere in the world. Of the 397 U.S. rescues last year, 275 were water rescues, 42 were from downed aircraft and 80 were on land involving PLBs. Florida had the most SARSAT rescues with 106, followed by Alaska with 56 and Utah with 20.
The GOES-R/GeoXO quarterly newsletter for October – December 2022 is now available. The GOES-R and GeoXO programs achieved new heights in 2022. We launched GOES-T, now known as GOES-18, completed on-orbit checkout, executed two GOES-17 and GOES-18 data interleave periods, and handed the satellite over to NOAA’s Office of Satellite and Product Operations. GOES-18 became NOAA’s operational GOES West satellite on Jan. 4, 2023. GOES-U is progressing toward its planned launch next spring, completing thermal vacuum testing and preparing for mechanical testing. And the future of NOAA’s geostationary satellite observations is assured, with the approval of the GeoXO Program.
NOAA’s operational satellite fleet has a new member. GOES-18 entered service as GOES West on Jan. 4, 2023. The milestone comes after a Mar. 1, 2022, launch and post-launch testing of the satellite’s instruments, systems, and data. GOES-18 replaces GOES-17 as GOES West, located 22,236 miles above the equator over the Pacific Ocean. GOES-17 will become an on-orbit standby. In its new role, GOES-18 will serve as NOAA's primary geostationary satellite for detecting and monitoring Pacific hurricanes, atmospheric rivers, coastal fog, wildfires, volcanic eruptions, and other environmental phenomena that affect the western contiguous United States, Alaska, Hawaii, Mexico, and Central America. GOES-18 joins GOES-16 (GOES East) in operational service. Together the two satellites watch over more than half the globe, from the west coast of Africa to New Zealand and from near the Arctic Circle to the Antarctic Circle.