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ABSTRACT

This Algorithm Theoretical Basis Document (ATBD)sdabes in detail the procedures for
developing and using a flood/standing water (FS9r&thm designed for the GOES-R
Advanced Baseline Imager (ABI). It includes a diggion of the requirements and
specifications of the FSW products and some speaformation about the ABI that is relevant
to the derivation of the FSW products. The mairt pithe ATBD is a description of the
science of the proposed ABI FSW algorithm. Thecpss of algorithm selection is documented
and includes a review of satellite FSW researche dimulated radiances were calculated using
sensor spectral response functions (SRF) that@uexted from the actual ABI instrument. A
description of the expected implementation of tB&WFalgorithm is provided and ancillary data
sets needed for the FSW calculation are listed.

In order to find the best DT approach, eleven degcigee (DT) algorithms, including the
J48graft or J48, which is based on the C4.5, NB{addaive Bayes/Decision Tree hybrid),
Random Tree, Random Forest, REP Tree, BFTree, Dec&ump, FT (final tree), and CART
(Classification and Regression Trees) were addpbedthe literature for evaluation as the Day
1 GOES-R FSW algorithm. The algorithm with the kssturacy and easiest implementation,
the J48 or C4.5, was selected as our baselineitiligor

The selected algorithm was applied to the proxy Ni®&nd SEVIRI data. The retrieved FSW
preliminary product: yes/no water detections wen@gared against independent ground truth
data and the results were analyzed. The propeftige algorithm were examined for selected
cloud shadow conditions, time of day and illumioatobservation geometry effects, and a
variety of surface types. The algorithm was fotmdheet specs with the test data sets. Perfectly
cloud free data is assumed in all testing of thé&RTesearch. A process for routine evaluation
of the operational GOES-R FSW is described; thatiohes an automated cloud shadow
detection algorithm, routine matchups against gdaunuth and methodology for product
evaluation. Finally, practical matters, such ampoter resources, instrument performance and
its effects on the product are considered.
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1. INTRODUCTION

The purpose, users, scope, related documents wistrehistory of this document are briefly
described in this section. Section 2 gives an agerof the standing water retrieval objectives
and operations concept. Section 3 describes thdibaslgorithm, its input data requirements,
the theoretical background, sensitivity analysed, error budgeting. In section 4, testing cases
were presented using MODIS data and SEVIRI dafa@des. Some practical considerations
are described in Section 5, and some assumptiehbnaitations associated with the algorithm
are described in section 6. Finally, Section 7 gmesthe references cited.

1.1. Purpose of This Document

This Algorithm Theoretical Basis Document (ATBD)pdains the physical and mathematical
background for an algorithm to derive the standuager/flood product as a part of the
requirements for the Advanced Baseline Imager (ABBI is the primary visible and infrared
instrument to be flown aboard the platform of thep&tationary Environmental Operational
Satellite (GOES) R series (GOES-R) of NOAA metengatal satellites. This document
provides an overview of the required input date,ghysical and mathematical backgrounds of
the described algorithm and its predicted perforrearensitivity study of the algorithm,
practical considerations, and assumptions anddtmits.

1.2. Who Should Use This Document

The intended users of this document are thoseestien in understanding the physical basis of
the standing water algorithm and how to use thpuwudf this algorithm for a particular
application. This document also provides informatiseful to anyone maintaining or
modifying the original algorithm.

1.3. Inside Each Section

This document covers the theoretical basis fod#révation of the Standing Water product from
ABI data. It is broken down into the following masections:

» System Overview provides objectives of the Standing Water aldonit relevant details
of the ABI instrument, and a brief description loé product requirements.

» Algorithm Description: provides all the detailed description of the aipon including
its physical basis, its input and its output.

* Assumptions and Limitations provides an overview of the current limitatiorfgloe

approach and gives the plan for overcoming thesgdiions with further algorithm
development.
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1.4. Related Documents

This document may contain information from otherfEE82R documents listed in the website
provided by GOES-R algorithm working group (AWG):
http://www.orbit2.nesdis.noaa.gov/star/goesr/indbpg.

In particular, readers are directed to read theseaments for a better understanding of this
ATBD:
GOES-R Series Ground Segment Functional and Peafuce Specification
GOES-R Series Mission Requirements Document
GOES-R Algorithm Theoretical Base Document for ABoud Mask
GOES-R Land Surface Team Critical Design Review

Other related references are listed in the Refer&asction.

1.5. Revision History

Version 0.1 of this document was created by Dr.dhan Sun of GMU, with its intent being to
accompany the delivery of the version 0.5 algorghimmthe GOES-R AWG Algorithm
Integration Team (AIT)The document was then revised following the docurgaideline
provided by the GOES-R Algorithm Application Gro{(AWG) before the version 0.2 delivery.
In 2010 summer, version 1.0 of the document waggresl by Dr. Donglian Sun and Dr. Rui
Zhang, which includes some new results conductad the algorithm Critical Design Review
(CDR) and the Test Readiness Review (TRR), asltugitnm 80% readiness document.
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2. SYSTEM OVERVIEW

This section will describe objectives of the StagdWater algorithm, details of the ABI
instrument, and the product requirements.

2.1. Products generated

Floods are usually disastrous events occurrinpantgeriod of time. For this reason, satellite-
derived flood maps, available in near-real time,iavaluable to stake holders and policy makers
for disaster monitoring and relief efforts. Preaisapping of the floods/standing water is also
required for detecting deficiencies in existingofiiocontrol and for damage claims afterwards.

Satellite sensors used in river/flood studies maglassified into two types: (1) passive, in
which the sensor receives energy naturally reftebteor emitted from the earth's surface; and
(2) active, in which the sensor provides its ovumilination and records the amount of incident
energy returned from the imaged surface (Smith7L9assive sensors include all of the visible
and infrared instruments such as the Landsat Thematpper (TM) and Multi-Spectral Scanner
(MSS), the Advanced Very High Resolution RadioméfrHRR), the Satellite Pour
I'Observation de la Terre (SPOT) and the Advanqeat&borne Thermal Emission and
Reflection Radiometer (ASTER), Moderate-Resolutinaging Spectroradiometer (MODIS)
and Landsat-7 sensors. The Advanced Baseline InfjAge)y aboard future GOES-R belongs to
this type of sensor.

In microwave spectrum, passive sensors such &pbeial Sensor Microwave/Imager (SSM/I)
aboard the defense meteorological satellites atigdeagadar) sensors suchRADARSAT

(Bonn and Dixon, 20059re excellent tools for monitoring floods sinceytitan penetrate
clouds,which usually occur during flood periodmd measure the microwave energy naturally
emitted from the Earth's surface. If absent of ta&tign or tress, radar returns are usually low
over the smooth open water surface. This charattedllows flood extent to be determined
with good accuracy under multiple conditions. Hoevturbulence, wind-induced waves,
vegetation and/or tress mixed with flooded watan all cause significant increases in radar
back-scattering, making inundation extent diffialtimpossible to determine. Moreover,
interpretation of SAR imagery is less straightforgvthan it is for the visible/infrared range.

As an advanced visible and infrared imager abdasdext generation GOES-R system, the
potential of GOES-R ABI data in large area floodnibaring should not be ignored. Although
the ABI offers coarser spatial resolution than mpakar-orbiting sensors such as MODIS and
LANDSAT, the high temporal resolution of geostaionsatellites (5 minutes for the ABI),
make them very useful for dynamic monitoring obfibevents, because they usually occur
quickly. Compared to the previous GOES seriesnéwve near-infrared channel 3 (0.86 pum) of
the GOES-R ABI makes it suitable for monitoringrigtimg Water/Floods. In the age of climate
change, severe floods appear to be occurring megeéntly than in years past. This makes the
GOES-R ABI observations more attractive in dynafi@od monitoring.
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In the GOES-R program, the Flood/Standing Watentifleation accuracy requirement is 60%
for all the four ABI scanning modes (i.e., full Kihiemisphere, CONUS, and mesoscale). A
primary objective of the GOES-R Flood/Standing Waevelopment team is to provide a state-
of-the-art Flood/Standing Water identification aiigfom that meets the GOES-R mission
requirement.

The Flood/Standing Water requirements defined byntission requirement document (MRD)
and the Ground Segment Functional and Performapeeif®ation (GS-F&PS) are listed in
Table 2.2.

2. GOES-R mission requirements for Standing Water.

=R Q ] 5 2 g
S 4|88 & | 28| & | 28 | ¢ | £ |5z| =z
£ < Ul Ss| & | B3 " ES < s | 25| &=
5 (9|85 | 5| g5 | E 23 £ | 5 |E5| 98
: I - | @O I =< g < I 3 3 ©
Flood/Standing Z;O(?;tr’gg’
Wgter: T| FD | 1km 5 km 0-1 | .assification| 80 Min| 3 min| TBD| LZA <67
Hemisphere to 60%
G| FD | 1km 1 km 0-1 60% 15min| 1 min | TBD | LZA <70
Flood/Standing F;);O(E’;tr’gg’
Water: T|{ M |1km 1 km 0-1 | jassification | 60 Min| 3 min| TBD| LZA <67
Mesoscale to 60%
G| M 1km| 0.5km 0-1 60 15min| 1 min| TBD | LZA <70

'T=target, G=goal, LZA=Local Zenith Angle
2 C=CONUS, FD=full disk, H=hemisphere, M=mesoscale

First of all, the ABI cloud mask will be used fdoad detection. Yes/no Flood/Standing Water
retrieval in each scanning mode will be performadeach cloudless (i.e. “clear” and “possible
clear” indicated by the cloud mask) pixel, durihg tlay-time. Decision Tree technique will be
applied to derive the rules and threshold valuesugh the training (learning) process. Then the
rules obtained from the training process will thenapplied to “predict” or model “future”
standing water. The resultant map is made by cangpé&r a reference non-flooding water mask
to identify deviations which are then labeled a®d. Finally, the Yes/No Flood/Standing Water
detection quality will be indicated with a set afadjty control flags which are either generated in
the Flood/Standing Water retrieval process or ghf®en the input data. The quality flags are
assigned to each pixel.

Finally, algorithm simplicity and robustness iscaésconcern in order to produce the
Flood/Standing Water identification product evafieEn minutes, which is the goal of ABI
FSW product refresh rate.

2.2 Instrument Characteristics

The ABI will be a critical mission on GOES-R, prdirig over 60% of all the mission data
products currently defined. Similar to the curr&@@ES imager, ABI will be used for a wide
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range of qualitative and quantitative weather, nogsaphic, climate, and environmental
applications. ABI will offer more spectral bandgglrer spatial resolution, and faster imaging
rate than the current GOES imager. Its spatialluésa will be nominally 2 km for the infrared
bands and 0.5 km for the 0.64 um visible band. @i instrument will allow a flexible
scanning scenario, two basic modes are envisiddee.mode is that every 15 minutes ABI will
scan the full disk (FD), plus 3 times continentaltdd States (CONUS), plus a selectable 1000
km x1000 km area every 30 seconds. The second imokat the ABI can be programmed to
scan the FD iteratively. The FD image can be aequim approximately 5 minutes. The current
GOES imager takes approximately 25 minutes for aGOES-R will provide a fivefold

increase in the coverage frequency (Schmit e2@04, 2007).

ABI has 16 spectral bands; five are similar toQtt, 4-, 11-, and 12- um windows and the 6.5-
pm water vapor band on the current GOES-8/-9/-10Rtagers (Menzel and Purdom, 1994;
Ellrod et al., 1998), and another is similar to #33 pm on the GOES-12/-N/-O/-P imagers and
the GOES-8/-P sounders (Hillger et al., 2003; Stletnal., 2002). Additional bands on the ABI
are 0.47 um for aerosol detection and visibilitireation; 0.865 pum for aerosol detection and
estimation of vegetation index and health, and @tenWater/Floods; 1.378 um to detect very
thin cirrus clouds; 1.6 um for snow/cloud discriation; 2.25 um for aerosol and cloud particle
size estimation, vegetation, cloud properties/surgg hot-spot detection, moisture
determination, and snow detection; 7.0 and yu®4or midtropospheric water vapor detection
and tracking and upper-level sulfur dioxide ¢p@etection; 8.5um for detection of volcanic

dust clouds containing sulfuric acid aerosols astaration of cloud phase; 9uén for

monitoring atmospheric total column ozone and wbgezl dynamics (Steinbrecht et al.1998);
and 10.3%um for deriving low-level moisture and cloud partidize. Each of these bands is
often used in conjunction with other bands in atipld spectral approach for product
generation. Channel specification of the ABI isagivn Table 2.1. The advanced design of ABI
will provide users with twice the spatial resolutidive times the scan rate, and more than three
times the number of spectral channels comparduetaurrent GOES imager (Schmit et al.,
2007). These improvements will allow future metdogests and climatologists to significantly
improve the accuracy of their products, both ireéasting and nowcasting.

Table 2.1. Spectral characters of Advanced Basdhrager

. Upper Limit .
oo | "o o4 | epTISNR | Of yramic | SR
Range

1 0.47 0.45 — 0.49 30011 652 W/nf/srjum | 1 km
2 0.64 0.59 — 0.69 300:1" 515 W/nf/srium | 0.5 km
3 0.86 0.8455 — 0.8844 300:1" 305 W/nf/stjum | 1 km
4 1.38 1.3705-1.3855 3081 114 Winf/srium | 2 km
5 1.61 1.58 — 1.64 300:1" 77 Winf/stum | 1 km
6 2.26 2.225-2.275 | 3001 24 Winf/stium | 2 km
7 3.9 3.8-4.0 0.1K 400K 2 km
8 6.15 5.77 — 6.60 0.1K 300K 2 km
9 7.0 6.75—7.15 0.1 300K 2 km
10 7.4 7.24 —7.44 0.1K 320K 2 km
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11 8.5 8.30 - 8.70 0.1% 330K 2 km
12 9.7 9.42 - 9.80 0.1K 300K 2 km
13 10.35 10.10 — 10.60 0.7K 330K 2 km
14 11.2 10.80 - 11.60 | 0.1K" 330K 2 km
15 12.3 11.80 - 12.80 | 0.1K" 330K 2 km
16 13.3 13.0-13.6 0.3K 305K 2 km

[1]100% albedo, [2]300K scene.

The water identification will be produced for egukel observed by the ABI sensor. The FSW
retrieval will rely on channels 2, 3, and 5 of thigl data using decision tree technique and post-

class change detection method.
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3 ALGORITHM DESCRIPTION

A complete description of the algorithm at the euntrlevel of maturity (which will improve with
each revision) is given in this section.

3.1 Algorithm Overview

Flood/Standing water is an important product in@@ES-R ABI processing system, and is on
the development list of the GOES-R algorithm wogkgroup (AWG). The standing water
algorithm is developed by the GOES-R AWG land tedthin the land module processing
subsystem (Figure 3.1). The right side of the larodlule includes all land products or
algorithms, such as land surface temperature,atitiy, flood/standing water, surface
reflectance/albedo, and vegetation index. Thesldt includes some common inputs for land
product algorithms.

The ABI Flood/Standing Water product is based ae@ision tree algorithm to determine the
presence of water, and applies visible and neaaned observations and other auxiliary
information. The resultant map is compared to anmabreference water mask to identify
deviations, which are then labeled as flood. Tigerdthm will be tested using a radiative
transfer model simulation dataset, and evaluatedysMODIS/SEVIRI proxy dataset.

1. Cloud Mask

Module

> Reflectance " SuaGe Albedo |
Reflectance

‘ Clear-Sky radiance ‘

[ 1 Dependency

@ Ancillary if not as dependency
I Prodluct

[l Bypass Product

Note: dependency/ancillary 5, 6, 7, 8 are required
for deriving surface reflectance

Figure 3.1. Products and dependencies of the ldgdrathm module.
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Note that 1) Surface reflectance may be derivamhasmtermediate product in the surface albedo
derivation (if the MODIS-like algorithm is applied)) Aerosol optical thickness and surface
albedo may be dependent in the aerosol algorithartlaalbedo algorithm; 3) Surface
reflectance may be required for deriving standirsgewand top-of-canopy vegetation index. In
addition, the AWG cryospheric team requires théasar reflectance as a dependency of its
products.

3.2 Processing Outline

The processing outline of the standing water progdusummarized in Figure 3.2. The standing
water retrieval is started by extracting ABI sendatasets including channel 2, 3, and 5
reflectances, pixel geolocation and the sensoraizéity control flags. Afterwards, the process
extracts ancillary datasets which can be categbazeABI and non-ABI related datasets. The
ABI related ancillary datasets include the ABI danask and snow/ice mask, vegetation index
and surface temperature, which are level 2 ABI potgland were listed as dependencies in
Figure 3.1. The non-ABI related datasets may irelpicecipitation. More information on input
datasets will be provided shortly in the Algoritthmput sub-section. Next, the ancillary datasets
(precipitation) are mapped to the ABI pixel locatidhen, the ABI sensor data is filtered using
the cloud mask to ensure that only the cloud @earprobably clear pixels are processed for the
standing water retrieval. Finally, the calculateatev identification result and their associated
guality control flags are combined with the floddfsding water product package and are written
to files for user access.

Information Layer

- Data Processing

Figure 3.2. Flowchart of GOES-R ABI Flood/Standilvgter algorithm.
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There are two categories of change detection methwibr-class and post-class. The prior-class
detection method usually try to find the maximunamting extent during a period of time, and
may be difficult to be applied to operational apations for every 60 minutes like the GOES-R
FSW product. Due to the strong water and landrigigigation in the visible and infrared region,
like the ABI sensor, we selected post-class chaegection method. The flood/standing water
is detected by comparing water classification dythre times of flood witlieference water
mapped during normal conditiang=rom the first beginning, we made our selectrom

the perspective of operational implementatiéar water classification, we also chose the
well-established and mature decision tree algorithm

3.3 Algorithm Input

This section describes the input needed to prdbesstanding water/flood product. While the
standing water is derived for each pixel, ancilldayasets are required as well as the upstream
ABI data.

3.3.1 Primary Sensor Data

The list below contains the primary sensor datal igethe standing water retrieval. Primary
sensor data are derived solely from the ABI obg@ma and geolocation information, or the
level 1b data. Table 3.1 lists those input senata énd their descriptions.

Table 3.1. Input list of sensor data.

Name Type Description Dimension
Ch2reflectance input Calibrated ABI level 1b refleatarat channel 4  grid (xsize, ysize)
Ch3 reflectance input Calibrated ABI level 1b refence at channel 3 grid (xsize, ysize)
Ch5 reflectance input Calibrated ABI level 1b retence at channel $  grid (xsize, ysize)

Latitude input Pixel latitude grid (xsize, ysize)

Longitude input Pixel longitude grid (xsize, ysize)
Solar zenith input ABI solar zenith angles gridites ysize
View zenith input ABI view zenith angle grid (xseizysize

QC flags input ABI quality control flags with lev&éb data grid (xsize, ysizg)

3.3.2 Derived Sensor Data

There are two ABI derived sensor data sets (oABlerelated ancillary dataset quoted earlier)
used by the LST retrieval: 1) the ABI cloud masIlC@8) product, which indicates four
cloudiness conditions for each pixel: clear, prdpatear, probably cloudy, and cloudy, and 2)
snow/ice mask which indicates if the pixel is smawice covered. Table 3.2 briefly describes
input of the derived sensor data.
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Table 3.2. Input list of derived sensor data.

Name Type Description Dimension
Cloud mask input ABI level 2 cloud mask data gidite, ysize)
Snow/lce masK input ABI level 2 Snow/Ice mask data grid (xsizsizg)

In case the ABI snow/ice mask is not availabldhat&@OES-R operational, the Interactive multi-
sensor snow and ice Mapping System (IMS) will bedu®r the snow/ice mask.

3.3.3 Ancillary Data

The following table lists and briefly describes trecillary data required to run the Standing
Water/Flood which are the non-GOES-R data thatigeoinformation not included in the
primary sensor data or the previously computed GBKfata. The static standing water map
will be used as the reference non-flood map totifleflood pixels. The non-flood map could be
generated from ABI data by our decision tree athamiper month or per season when no flood
occurs. Before the ABI data are available, the lyestatic water/land map could be used, which
usually compiled from the IGBP land cover map.

Table 3.3 Input of ancillary data.

Name Type Description Dimension
Reference quma . Water/land reference map or non-flood . . .
or non-flooding input . o grid (xsize, ysize)
standing water classification map
water map

Land/sea mask input A land-ocean and coast mask d (xpize, ysize)
IMS snow/ice input Interactive multi-sensor snow and ice Mapping rid (xsize, ysize)

mask* P System 9 Y
CIour?];:;ldow input Cloud shadow mask grid (xsize, ysize

* IMS snow/ice mask is an alternative in case the gkBlw/ice mask is not available at the
GOES-R operation.

3.4 Theoretical Description

3.4.1 Physics of the Problem

The GOES-R ABI is a visible and infrared imageheTinterpretation of water identification by
using visible/infrared remote sensing is relativeiaightforward. According to the spectral
characteristics, in the near-infrared (NIR) ran@&+1.1um), water has lower reflectance than
vegetation and other land covers (Figure 3.3).l@ncbntrary, water has slightly higher
reflectance values than land features in the \agietl (RED) band (0.5-Opim). Therefore, the
ratio image and the difference image betwii#R andRED can be used to enhance the
difference between water and land. In the ratidifference image, water has extremely low
value, while land has relatively high value.
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Much of the pioneering work on the remote sensintpods was accomplished using the Multi-
Spectral Scanner (MSS) sensor on the First EarslodRees Technology Satellite, later renamed
Landsat-1. With a spatial resolution of about 80MBS data were used to map the extent of
flooding in lowa (Hallberg et al., 1973; Rango é&alomonson, 1974), Arizona (Morrison and
Cooley, 1973), Virginia (Rango and Salomonson, )@ along the Mississippi River
(Deutsch et al., 1973; Deutsch and Ruggles, 19@dg®and Anderson, 1974; McGinnis and
Rango, 1975; Deutsch, 1976; Morrison and White 6)9In all studies, MSS band 7 (0.8-1.1
um) was highly useful for separating water from sioyl or vegetated surfaces owing to the
strong absorption by water in the near-infraredyearms shown in Figure 3.3. This was further
confirmed by analyzing MSS band 5 (0.6-Qi), band 7 and field spectral radiometer data
along shoreline water-wet soil-dry soil transiti¢@ipta and Banerji, 1985). The flood areas
were delineated based on the sharp contrast beiwaedated regions and adjacent areas. The
standing water areas appeared as dark blue todigbtdepending upon the depth of water,
while the receded water/wet areas appeared adaégkt gray (e.g., Figure 3.4).

60
>0 —e— Water
g 40 | ~= compacted soil
Q —o— wet soil
S 30 ~+ silt-sand
g —x— grass
E 20 1 —a— wetland
mixed-forest
10 1 —a—Urban
0 -

0 05 1 15 2 25 3

Wavelength (micrometer)

Figure 3.3. Reflectance spectra of some land sarfpecies.

Other studies have continued the methodologydestloped with MSS, using Landsat TM and
SPOT data (France and Hedges, 1986; Jensen E9&6., Watson, 1991; Blasco et al., 1992;
Pope et al., 1992; Vila da Silva and Kux, 1992)e €barser resolution (ca. 1 km) sensors, such
as the Advanced Very High Resolution Radiometer (RR) aboard the NOAA series, has
been successfully used for studying very largerril®ds (Ali et al., 1989; Barton and Bathols,
1989; Gale and Bainbridge, 1990; Rasid and Pramafai3).

Shenget al. (2001) summarized the spectral characteristichk@htain features (i.e. water,
vegetation, soil, and clouds) during floods atdbservation scale of NOAA satellites. Although
AVHRR data can be displayed in 3-channel color cositps for visual analysis (flood/standing
water absorbs infrared wavelengths of energy apeéags as blue/black in the RGB composite
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imagery), water body identification in AVHRR imagexvolved from qualitative visual
interpretation to automatic quantitative extractidhe reflectance of AVHRR channel 2 (0.73-
1.1um, similar to MSS band 7), the reflectance diffeee(CH-CH;) and ratio (CH/CH,)
between AVHRR channel 2 and 1 (0.58-0u88, similar to MSS band 5) are used to
discriminate water from land if these parameteesless than the predetermined threshold
values.

The methods used in the literature to discrimimeder from land can be summarized as the
following:

1) Channel 2 model (Lin 1989; Sheng et al., 1998)

Water, if NIR<T, (3.1)
Land, if NIR>T,

Where CH is the reflectance of channel 2, andd a threshold.

2) Differential model between channels 2 and 1 (X0 and Chen, 1987)

Water, if (NIR-RED)<T, 3-2)
Land, if (NIR-RED)>T,

3) Ratio model of channels 2 and 1 (Sheng and Xiab994)
Water, if NIR/RED<T,
Land, if NIR/RED>T, (3.3)

Shenget al. (2001) found that the ratio (NIR/RED) image hack#tdr discriminating capability
than the difference (NIR-RED).

4) NDVI model
Normalized Difference Vegetation Index (NDVI):

NDVI _ NIR-RED (3.6)
NIR + RELC

Where NIR and RED stand for the spectral refleaneasurements acquired in the near-

infrared and red regions, respectively. Domenikiet al. (2003) used NDV!I to discriminate
water from land.
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Table 3.4. Vegetation classification accordingytpital NDVI values.

Soil Type NDVI
Dense vegetation 0.500
Sparse vegetation 0.090

Bare soil 0.025

Snow and ice -0.046
Water surface -0.257

It is apparent from its mathematical definitiontleé NDVI (Rouse et al., 1975 and Tucker,
1979) that an area containing a dense vegetatimopgawill tend to have positive values (say
0.3 to 0.8), while standing water, which has aeatbw reflectance in both visible (VIS: from
0.4 to 0.7 um) and near-infrared (NIR: from 0.7Lth um) spectral bands (Figure 3.3 and Table
3.4), results in very low positive or even slightiggative NDVI values.

5) Brightness temperature model
During daytime (Verdin, 1996):

Water, if Th,,,<T,
Land, if Th,,>T, (3.4)

During nighttime (Barton and Bathols, 1989):

Water, if Th,,<T, (3.5)
Land, if Th,,>T,

Where Thy2is the brightness temperature of the 11 op?channels, andolis a threshold.

The temperature model using AVHRR channel 4 oit 31aand 12 microns) brightness

temperature usually works well in areas where ffo@sulting from snow melt, because there is

usually a temperature discrepancy between watelaawd However, it may not work with

floods caused by heavy rainfall during rainy seasarthe summer when there is relatively low

or no temperature difference between land and water

6) Surface temperature model

Domenikiotis et al. (2003) also tried to use swfemmperature to discriminate water from land
surfaces.
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Figure 3.4. MODIS 1km RGB (7, 2, 1) composite irsageMidwest on June 10, 2008 before
(upper) and on June 17 (middle) and June 19 (loy&)8 after flooding.

All of the above studies by using spectral feataresbased on the reflectance difference
between water and land. Figure 3.5 shows the himtag)in RED, such as the
AVHRR/MODIS/SEVIRI CH1, the NIR, such as the AVHRWDDIS/SEVIRI CH2, (CH2-
CH1), CH2/CH1, and NDVI. In our study, we alsolude shortwave infrared or SWIR
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centered at 1.61 pm, for example, the MODIS CHE,Marmalized Difference Water Index
(NDWI). The NDWI (Gao, 1996) is a satellite-deriviedlex from the NIR and Short Wave
Infrared (SWIR) channels, NDWI= (NIR-SWIR) / (NIRWBR). MODIS has 2 bands in the
SWIR region: band 5 (1230-1250 nm) and band 6 (18282 nm) while band 2 represents the
NIR region. Meanwhile, ABI also has two bands ia 8WIR region, band 4 (1.3705 — 1.3855
pm) and band 5 (1.58 — 1.64 um). According to G&96¢), NDWI is a good indicator for
vegetation liquid water content and is less seresith atmospheric scattering effects than NDVI.
Since ABI band 4 (1.38 um) will only have 2 km resion, so our NDW!I will use ABI band 5
(1.61 pm) or MODIS band 6, so our NDWI is moredtanding water and may be a little
different from that defined by Gao (1996) as (pfQué) - p(1.24um))/(p(0.86um + p(1.24
um)).These histograms further demonstrate thattthéfgcation between Water and Land is
pretty clear, and water can be separable from lbgnasing these attributes, especially the CH2
reflectance, the reflectance difference (CH2-CHhy the reflectance ratio (CH2/CH1).

Perhaps the greatest difficulty with visible/infdrsensors is their inability to image the Earth's
surface under cloudy conditions (Rasid and Pramd®i83; Melack et al., 1994). For the
purpose of determining maximum flood extent, thiBallty is somewhat mitigated by the fact
that standing water can be mapped even after flecession (Rango and Anderson, 1974,
Deutsch, 1976). This effect can last from one to wweeks (Hallberg et al., 1973; Rango and
Salomonson, 1974; Morrison and White, 1976; Salsuon1983).

TcH1 . CH2 | [CH6 | CH2-CH1

614 ? 601 25.59 f 0.29 17.89 3543 -851 4766
ICH2/CHA1 NDVI |NDWI Land |

N

be7 003 090 | Dos _ 01 0.78

35712

Figure 3.5. Histograms of MODIS surface reflectant€H1, CH2, and CH6, (CH2-CH1),
CH2/CH1, NDVI, NDWI, and Land/Water samples (Swhén, 2010).
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3.4.2 Algorithm Selection

Upon simulating the top-of-atmosphere radiancdsttince with the proxy MODIS data, we
then conducted simulation analyses for the algaritdlevelopment.

Surface type “water body” is assigned to the ‘Watkass; all land surface types are assigned to
class ‘Land’ or ‘Non-Water'.

In order to find the best DT approach, several brethms, including the J48graft or J48,
which is based on the C4.5, originally propose@ynlan (1993), NBTree, which is a Naive
Bayes/Decision Tree hybrid (Kohavi, 1996), Randam®e] Random Forest (Breiman, 2001),
REP Tree, BFTree, Decision Stump, FT (final tra@y CART (Classification and Regression
Trees) (Breimaet al., 1984), are tested. All of these methodgdacision tree techniques which
represent supervised machine learning approachiegalr96,928 around the Mississippi river
were input to the algorithms with a split test mad&0% for training and the remaining 50% for
test. A comparison of the test accuracy from déifeDT algorithms is listed in table 3.8. All the
DT algorithms have a capability of discriminatirng tobjects well. The J48graft/J48 or the C4.5
and the CART got the best accuracy of about 97%véder identification. However, if we want
to further separate water into different water gjpebecomes more difficult. Table 3.9
compares the accuracy for different water typesifdifferent DT algorithms. We can see that
the accuracies for further separation of diffengater types are reduced. For water mixed with
land, the accuracy is reduced to about 70% frond48graft/J48 and random forest algorithms,
and even to about 60% from other algorithms. Faoded areas, land is inundated by water, so
water is usually mixed with vegetation, and/or $rem even urban. Therefore, the accuracy
requirement of 60% for GOES-R yes/no water idesdifon product is reasonable. Since we
wish to select an algorithm with the highest accyrfar water identification, as well as the
easiest implementation, we selected the J48 dC#& as our baseline algorithm.

Table 3.8. Comparison of DT Accuracy Rate (%) of Classifiestdnces from different types of
Decision Tree Algorithms (Water and Land) (Sun #u¢2010)

Jreeq J48graft | Decision Randon| Random

Types. | ADTree BFTreel ™ 4g Stump FT | Forest| Tree |REPTreqCART(NBTree

water | 97.C | 976 97.8 97.0| 97.0 93.1 93.¢ 97.Y 917 946

Land | 99-C | 98.9 99.2 99.1| 98.0 98.9 98.¢ 989 989 99.2
98.7

Average 98.7 98.9 98.7 | 97.8 98.6 98.1 98.7Y 988 985
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Table 3.9.Comparison of DT Accuracy Rate (%) of Classifietlddent Water types
from different types of Decision Tree Algorithms(® and Land)

DT algorithmg J48graft| Random| Random
Water Types NBTree 1348 Forest Tree REPTreq CART |BFTree| FT
water Mixed| oo oo/ | 70306 76.89d 66.7% 63.8% 68.10% 66.0% 69.6%
with land
Wetland | 62.4%| 66.79 63.1% 569 58206 57.7% 56% 48.9%
P‘U\/eatRe';’er 82.1% | 82.1%| 84.69%4 73.2% 82.1% 82.4% 79./% 80.5%
Pure Lake | g4 20 | 9206 | 84% | 81.3% 79.3% 86.9% 8206  80%
Water
Average | 73.4%| 73.694 75.950667.5% | 71.7%| 72%| 70.4% 68.5%

Finally, we emphasize that all the results discdigdehis point assume perfect cloud detection.
That is, all these results are for truly cloud cleiaels. Residual cloud effects in pixels classdfi
as clear may add significant noise to the standiai@r retrievals.

3.4.3 Mathematical Description of the FSW Algorithm

All of the methods introduced above reflected osgeat of water. We propose to use data
mining techniques, such as Decision Trees (DT)rtiegle, to integrate all the above attributes,
and at the same time, provide the threshold vaudsaccuracy of algorithm performance.

Compared to traditional statistical models, dataing methods such as DT analysis can help
find hidden relationships among multiple attribyp@sameters. DT is a classic prediction model
to support decision making (Han, 2001) by convgrtamplex data into relatively simple and
direct viewing structure. It has proven usefubther research areas, such as land cover/land use
classification (Colstoun et al., 2000). Xtal (2005) employed a decision tree regression
approach to determine class proportions withinxalpiThe DT was used for wetland composites
from the ASTER data (Wei et al., 2008) and floddtel land cover classification fromulti-
temporal RADARSAT-1 SAR datd&armuchet al., 2002), in which the wetlands or flood were
classified as surface cover types. The M5 modeltigs been used to derive flood related
discharge $olomatine et al., 2004¢arroll et al. (2008) have been successful in degiflood
maps for the Midwest flood event with MODIS datangsdecision tree (DT) approachhese
methods improved conventional spectrally basedsifieation.

Methods for analyzing and modeling data can beddwiinto two groups: “unsupervised
learning” and “supervised learning.” Unsuperviseatning does not identify a target
(dependent) variable, but rather treats all ofvidngables equally. In this case, the goal is not to
predict the value of a variable but rather to lémkpatterns, groupings or other ways to
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characterize the data that may lead to understgrafithe way the data interrelates. Cluster
analysis, correlation, factor analysis (principaponents analysis) and statistical measures are
examples of unsupervised learning.

Supervised learning requires input data that h#s paedictor (independent) variables and a
target (dependent) variable whose value is to bmated. By various means, the process
“learns” how to model (predict) the value of theget variable based on the predictor variables.
Decision trees, regression analysis and neuralorkssare examples of supervised learning. If
the goal of an analysis is to predict the valua wériable, then supervised learning is the
recommended approach. Our goal here is to modedift) Standing Water and Flood, so we
chose the supervised learning approach.

In this study, we will use decision tree algorithamich is a supervised machine leaning
technique, for Flood/Standing Water identificatibecause unlike the previous studies using
piecemeal data, DT algorithms can integrate alutheful predictors. We here take the C4.5 as
an example to show how the DT works for classiftrat

The C4.5 algorithm (Quinlan 1993) is a machineriesy method based on decision tree
induction (Han et al., 2001). The basic stratedgyp iselect an attribute that will best separate the
samples into individual classes by a measurentefarmation Gain Ratib The objective is to
produce the most accurate separation with the ggmstint of information (Han et al., 2001).

Formally, let S be the training set consisting data samples, and let s)6e the number
records in S that belong to clasqi€1, 2... m) out of m classes. The information nekttte
classify S is:

Info(S) = —i S(g) log, ( S"?) (3.7)

i=1

Hence, the amount of information needed to partiSdnto {S, S2...S} by attribute A (A has v
distinct values) is:

Info(A| S) = -Z% Infg 9 3.8)
The gain is computed as:
. . _gain(Al S
gainRatid A 3_—Info(A| S (3.9)
where gain(A] 9= Infd - Info A ¥ (3.10)

In this study, five attributes/parameters (CBHs, CHs-CH,, CHs/CH,, and NDVI) and two
classes (Water, Land) are integrated for watertifieation.
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3.4.4 The GOES-R ABI Forward Simulations

To test the accuracy and sensitivity of the aboVealyorithm for the GOES-R ABI, we
performed forward simulations using the latest iere®f (MODerate resolution atmospheric
TRANsmission) (MODTRAN v4.3) to generate a comprediee simulation dataset.

The MODTRAN atmospheric radiative transfer modediBet al., 2000) has been widely used
in satellite remote sensing studies for about tdexmades. It is a moderate spectral resolution

model, up to cilin frequency. We used MODTRAN version 4, reverssoneleased in 2008.
The radiative transfer simulation procedure issiitated in Figure 3.6.

I - Radiative Transfer Model (RTM)
— Simulati_on
Analysis

Figure 3.6. Radiative transfer simulation procedure

An angularly dependent atmospheric radiation med#ODTRAN is used for GOES-R forward
simulations (Berk et al., 2000). The spectral raomeered is from 0.am (50000 crit) to 4pm
(2500 cn') with resolution 20 crh.

In order to account for the wide range of differatthospheric and surface conditions, a large
number of simulations for each season need to tferpeed with variations in:.
» Geometry of the problem (solar zenith angle, viepand azimuth angles)
* Atmospheric conditions (profiles of ozone, watepea aerosols)
» Surface conditions (spectral characteristics ofstinéace)
» Characteristics of the instrument (spectral respafishe satellite sensors); the latest
GOES-R ABI spectral response functions were obthfram the University of
Wisconsin fip://ftp.ssec.wisc.edu/ABI/SRF/

In order to represent the variability in solar getry, the simulations are performed for 10
different solar bins.



Table 3.5. Solar zenithangle bins used for ABWvBrd simulations.

Solar bin 1 2 3 4 5 6 7 8 9 10
Solar zenith

angle 12.9| 30.8 | 41.2| 483 565 632 695 755 814 8.2
(degrees)

In order to obtain angularly dependent relationshie calculations are performed in 48 viewing
bins - 6 zenith angles and 8 azimuth angles.

Table 3.6. Satellite zenith angle bins used for #BAVard simulations.

i 1] 2 [ s ] 45|
( dggrAees) 11.45| 26.08 | 40.32| 53.75 6594  76.3

Table 3.7. Azimuth angle bins used for ABI forwsirdulations.

Azimuth

Bin 1 2 3 4 5 6 7 8
Azimuth

angle | 1.91| 9.97| 24.18 44.02| 68.78 97.55| 129.31 162.89
(degrees)

Climatological profiles for temperature, water va@nd ozone grouped into 4 seasons (5
profiles for each season) are used in the simulati®hese climatological profiles are derived
from the TIGR profiles. For each profile, simulatsoare performed for 3 different visibilities
(18, 23, and 28 km) in order to account for thaalality of atmospheric aerosols. These create
output files for 4 seasons x 10 solar zenith angl®&sprofiles x 3 visibilities x 3 albedo models
(1800 cases total). Fourteen UMD (Univ. of MarglaiGBP surface types were used plus an
additional surface type (Snow/ice) and spectrabipfrom theNASA JPL Each surface type
contains 1800 simulation cases.

The narrowband outgoing radiances at the TOA ata&mdd by convoluting the spectral
radiances with the response function of the speritrument.

| (s 4,6) = [LODI, (o, 1, 8)1 (3.13)

A

The radiance is then converted to reflectance.fiksedetermined the mean channel radiance by
integrating over the sensor spectral responseitm(dRF). The latest GOES-R ABI spectral
response functions from the University of Wiscon@ip://ftp.ssec.wisc.edu/ABI/SRJare used.

The channel radiances were then converted int@sponding reflectance.
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3.4.5 Algorithm Challenges

3.4.5.1 Cloud shadow effect

Samples of water, vegetation, bare land, and cdtvadow are collected. Scatter points of these
samples are shown in Figure 3.7, water is showadrwith vegetation in green, land in blue and
cloud shadow in cyan. It can be seen clearly tiaspectral signatures of cloud shadow are so
close to those of water that cloud shadow may b#ysaonfused and misclassified into water.

NDVI

CH&
vegetation = water x bareland cloud shade

Figure 3.7. Scatter plots of NDVI vs. MODIS CH3e@n: vegetation, red: water, cyan:
cloud shadow, and blue: bare land).

» Geometrical relationship for cloud shadow

Cloud shadows always exist next to or around thadd, so the projection of a cloud and its
shadow can be assumed as in the same horizonta ibldne earth curvature is not considered.
Thus the relationship for cloud shadow in a saeeithage can be established based on the
geometry relationship. Firstly the coordinateslofid in an image plane can be calculated by the
satellite geometry angles. Then with solar geomatigles, the place of cloud shadow can also
be calculated accurately. The coordinates of ckhatlow (6, Yp) in an image plane can be
described as the following:

ng, +L *sing,

Xp = X, +—————"*si
tang, * dys tang, * dx



h h
Yy =Y, ——————*cosp, + ————*Co
°° tan@,*dy . tand, * dy s (3.14)
Where (Xc, Yc) is the cloud position in an ima@g(solar elevation angle) arty (sensor
elevation angle) have a range ab®J, ¢ (solar azimuth angle) ang (sensor azimuth angle)
have a range of @ 360, dx and dy is the spatial resolution in longitwahel latitude of a satellite
image respectively, and hc is the cloud top height.

* Some results for cloud shadow detection

Figure 3.8 shows an example of cloud shadow deteetith the MODIS observations (Li
et al., 2010).

Figure 3.8. MODIS false color (726 RGB compositedge and the detected cloud (in -
white)/cloud mask (in black) distribution (07:55GMI2/04/2008).

3.4.5.2 Anisotropic effect

As shown in Figure 3.9, during early morning, (€08:00 UTC or 08:45 UTC), and late
afternoon, the reflectance over vegetated arearislow, and makes it difficult to separate
vegetation from water, or, in other words, the watady is confused with vegetation. If the
reflectance of vegetation is as low as that of waken vegetation may be misclassified into
water, as shown in Figure 3.10 (upper, as therasried with red oval). If ABI surface albedo
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product can provide BRDF-corrected nadir surfaflectance, then anisotropic effect won't be a
problem to FSW detection.

15:00 UTC

e S . P { i RS A s
Figure 3.9. Three- channel composite images irstime area at different time on December
26,2007.

3.4.5.3 Sun glint contamination

Sun glint occurs in imagery when the water surfagentation is such that the sun is directly
reflected towards the sensor, and hence is a umofisea surface state, sun position and
viewing angle (Figure 3.11). A variety of glintreection methods have been developed for
open ocean imaging and high resolution coastai@ins, since solar glint is usually found
over open ocean and coastal region (Kay et al9R®8hile our product is working with inland
standing water identification, a land/see masktep remove open ocean water. For inundated
coastal area, it is found that the values of ND¥¢réased dramatically in the glitter direction
(Figure 3.12), providing an indication of surfacater and a method to discriminate water under
solar glint conditions (Vanderbilt, 2002).
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(a) 08:45 UTC on Dec. 26, 2007

Figure 3.10. Three- channel composite images irsttmee area at different time on
December26, 2007.
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Figure 3.11 lllustration of sun glint in an opticahagery, showing sun glint on the right hand

side (upper), and sensor radiance plotted for 4et@nds along the line marked in (upper)
(from Kay et al., 2009)

1.00 Non-inundated

vegetation 1

-80 /

vegetation 2
70 —

Inundated vegetation

50 —

NDVI (dimensionless)

Open Water

20 f 1 | ] i | I
—47 —38 —26 —11 8 23 36 46

Zenith view angle (deg)

Figure 3.12. The NDVI of various cover types vameth view angle, being less than 0.3
forinundated vegetation viewed in the specularaiom. The four classes—
noninundatedvegetation 1, noninundated vegetatjonuthdated vegetation, and open water—
wereidentified with the aid of a classification femed in spectral space (from Vanderbilt et al.,
2002)
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3.5 Algorithm Output

Output of the Flood/standing water algorithm maiciytains two data arrays: the
Flood/Standing Water identification, plus assodajaality control flags, as described in Table
3.8.

Table 3.8 Algorithm output data.
Name Type Description Dimension

Determined flood identification for each pixeltok
scanning mode as:

Flood/Standing 1: Flood, 2: Non-Flood, 3: Water body without
i(ﬁﬁiﬁ{gﬁ‘;ﬁ BYt® |change, 4: Land without change, 200: Cloud, |

Cloud Shadow, Snow/Ice: 50, and 255: Missing
Value.

@Bd (xsize, ysize

Quality control flags for each pixel of the scarqpnmode:

QC flags Byte cloudiness, sensor data quality, etc.

grid (xsize, ysize

Details of the 1-byte product Quality Control (Qi2)gs are listed in Table 3.9. The value of the
entire 1 byte indicates the Quality Flag of theresponding pixel. QF=0, the pixel of the product
is good. QF>0, the pixel of the product is bad.

Table 3.9. Definition of the FSW product Qualityn@ol flags.

Bit Flag Definition

0 Availability 0: normal, 1: space or bad or miggpixel
1 Cloud Mask 0: clear, 1: cloudy

2 Cloud Shadow Mask O: clear or NA, 1: cloud shadow

3 Satellite Angle 0: normal, 1: satellite zenitlgk»67°

4 Solar Angle 0: normal, 1: solar zenith angle>67°

5 Snow/Ice Mask 0: clear or NA, 1: snow or ice pixe

In addition, the flood/standing water retrieval ggesing will also produce some metadata
describing processing information (e.g. date/titaengs), as are listed in Table 3.10.

Table 3.10. Metadata defined for the FSW prodiet fi
METEDATA | TYPE DEFINITOIN

DateTime common | Date and time of swath beginning and swath end
Product resolution (nominal at nadir), number ou®
and number of columns, byte per pixel, data tygte b
order information, location of box relative to nadpixel
space

Product Name| common| The ABI FSW

Bounding Box | common
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Ancillary Data | common Ancillary de_lta name us_ed to produce the productsios
number, origin (where it was produced), name

Satellite common GOES-R

Instrument common | Advanced Baseline Imager

Altitude common | Altitude of the satellg

Nadir common | Pixel in the fixed grid

Position common | Latitude and longitude of the satellite positio

Projection common | Grid Projectin

Mode common | Type of Scamode

Version common | Product versiomumber

Compression common | Data compression type (methadyed

Location common | Location where the product ppoduced

Contact common | Contact information of the producer/scienti§igpporter

document Common | Citations to documents (i.e., ATBD

Product Unit FSW NON

Statistics ESW Totalpir;(LérIT;ber of FSW pixels, total number of Non-FSW

Good pixels FSW Total number of “good” pixels (defined by QF)

Total Pixels FSW Total number of “bad” pixels (defined by QF)

Note: the definitions iitalic words are determined at running.
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4 TEST DATA SETS AND OUTPUTS

4.1 Simulated and Proxy Input Data Sets

The selected algorithm should be tested usingsegallite data. Since the ABI data is not
available during the development phase, we usedfdan other satellite sensors as proxies: the
moderate resolution imaging spectroradiometer (M&®Rboard the NASA Earth Observing
System (EOS) Terra and Aqua platforms, #melSpinning Enhanced Visible and Infra-red
Imager (SEVIRI) aboard the European Meteosat SeGartkeration (MSG) satellite. The data
from these satellite sensors are considered asguoades of ABI since they have visible (VIS)
and near-infrared (NIR) channels similar to thoseh® ABI. Table 4.1 lists the sensor spectral
specifications of the MODIS and MSG/SEVIRI, as vwasd|ABI.

Table 4.1. Similarity of MODIS and SEVIRI Imager#\Bl in channel spectrum.

Sensor | Channel No| WavelengtCenter Bandwidth(um) Spatial
(Hm) Resolution

ABI 2 0.64 0.59-0.6¢ 0.5 knr
3 0.8¢ 0.8455- 0.884 1 km

MODIS 1 0.64¢ 0.620-0.67( 0.25 kn

2 0.85¢ 0.841-0.87¢ 0.25 kn
SEVIRI 1 (VIS0.6 0.63 0.56 -0.71 3 km
2 (VIS0.8 0.81 0.74 ~0.8 3 km

4.2. Algorithm Testing with the Simulated Data

The C4.5 classification algorithm (Quinlan, 1993xswvapplied to the partial simulations as
training data to build a decision tree:

Rule 1:

CH <= 2.65562%

-> class Water [99.5%)]
Rule 2:

CH > 2.65562%

-> class Land [99.8%)]

» Evaluation on training data (10560 items):

* Rule Size Error Used Wrong Advantage

. 1 1 05% 2880 0(0.0%) 28883@0) Water
. 2 1 0.2% 7680 0 (0.0%) @)0| Land

» Tested 10560, errors 0 (0.0%) <<

. (@ (b) <-classified as

. 2880 (a): class Water

. 7680  (b): class Land
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The number in brackets under the possibility v§%t in rectangles at each leaf equals the
number of training instances which belong to tkehpn the tree. Meanwhile, each number is
followed by the number of classification errors @matered in that particular path of the decision
tree. The simulation results show that the neaaiefli channel (Ctfor ABI) reflectance is the
most effective attribute to separate water frontdlaivthen CH reflectance is less than a
threshold value (2.66% here), water can be idetifiThe total accuracy can reach over 99%.
Since in our GOES-R ABI forward simulations, werdtdnclude calibration error. The
simulated data may be an ideal case and quite@ifférom the real situation, the water are also
pure water, thus the rules may be too simple, badviater classification accuracy is close to
perfect, and may be unrealistic high.

4.3 Output from Input data sets
4.3.1 Test with the Proxy MODIS data

In June 2008, unusually heavy rains from th8 torthe 14 in the upper Midwest triggered
flooding throughout the upper Mississippi basin.3KODIS channels 7, 2, and 1 RGB
composite images show water bodies before andfédteting (Figure 4.1).

As described in the introduction, several paranseiacluding MODIS channel 2 reflectance
(CH,) and channel 1 reflectance (QHhe difference (CHCH,) and ratio (CH/CH;) between

CH, and CH, NDVI, brightness temperature at 11 (MODIS char8iglor 12 pm (MODIS
channel 32), and surface temperature, can be asddritify water from land in previous studies.
Which parameters or the combination of severalmatars are the most effective? Moreover,
how can the threshold values can be determinedat Wihe accuracy? We propose to apply the
Decision Tree method to identify Flood/Standing ¥vdtom the proxy MODIS measurements,
because DT can integrate all the possible candmratéictors, at the same time, it can determine
the threshold values, and give accuracy estimates.

43.11 Data used for training
* MODIS land cover type products (MCD12Q1)

MODIS land cover type 1, which includes 17 Inteior@él Geosphere-Biosphere
Programme (IGBP) types: (0) water, (1) evergreesdiedeaf forest, (2) evergreen
broadleaf forest, (3) deciduous needleleaf fofd3tdeciduous broadleaf forest, (5)
mixed forest, (6) closed shrublands, (7) open dands, (8) woody savannas, (9)
savannas, (10) grasslands, (11) permanent wetléi®#)scroplands, (13) urban and
built-up, (14) cropland/natural vegetation mosél&) permanent snow and ice, (16)
barren or sparsely vegetated.

* MODIS 8-day composite surface reflectance, atmosphe correction products
(MYDO9A1)

The MODIS Surface Reflectance product (MYDO09A1gasnputed from the MODIS

Level 1B land bands 1, 2, 3, 4, 5, 6, 7, G (centete).648 um, 0.858 um, 0.470 pum,
0.555 um, 1.24 pm, 1.64 um, and 2.13 um, respdgtivihe product is an estimate
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of the surface reflectance for each band as it &vbalve been measured at ground
level after removing the atmospheric scattering aogbrption.

S

MODIS IGBP

surface tvoes
2008

Reflectance at 0.648
um (MODIS CH1)

Reflectance at 0.858
um (MODIS CH2)

sur_refl_bO1

Figure 4.1. MODIS land cover at 1 km resolution aeflectance data at 0.648n (MODIS
CH1) and 0.858&m (MODIS CH2) on May 28, 2008 before flooding wesed for training.

« MODIS TerratAqua Nadir-BRDF (Bidirectional Reflente Distribution Function)
Adjusted Reflectance 16-Day L3 Global 500m SIN Gf@D5 (MCD43A4).
* MODIS cloud mask (MOD35) data
Cloud mask data is used to filter the cloudy ctbads.

4.3.1.2 Results from the MODIS training data

The MODIS surface reflectance and land cover detarb flooding on May 28, 2008 are used
for training (Figure 4.2). From Figure 4.2, we c@e clearly that MODIS channel 2 reflectance
(CH2) can ‘see’ water more clearly than channelHX), particularly in the case of rivers. In
order to perform DT analysis, surface reflectar(é&sat 250m are aggregated to the same 1 km
resolution as the land cover data. MODIS cloud n{8RD35) data are used to filter clouds.
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Figure 4.4 shows an example of the tree structereet from the J48 (or the C4.5) algorithm
for the discrimination of water from land. The temploys a case's attribute values to map it to a
leaf, for designating one of the classes. The numberaolets following each leaf equals the
number of training instances that are mapped ®léaf, and the second number after “/” in
brackets (if it appears) is the number of instarthasare misclassified to this leaf. A non-
integral number of cases may arise. This is becatisd the value of an attribute in the tree is
not known, C4.5 splits the case and sends a fradibevn each branch. The node in the upper
level of the tree has a higher information gaiiordtan in the lower level node in the
classification. Therefore, as shown in Figure attrjbutes/parameters like the CH2-CH1, which
appear at the root node of the tree, are more itapothan those at the lower level, such as the
CH2 and NDVI, for identifying water from land.

(CH2-CH1)
/-‘_H-\-\-\-\"""-\-\__
" =29 »29 e
(CH2-CH1) (CH2-CH1)
/N FA"
<=015 »015 <=917 »917
/ \ / \
Water (3821.0490)  nowi NDWi ~ Land (366930480)
/N P
<=-0.2931>-0.2931 <=(.2672 >0.2872
/N ra N
CH1 \Water (\14-7501'111 L'O NDVI NDVI
/N /N /N
<=102 »>102 <=0.228 >0228 <=0.5335 » 05335
/ \ / N i \
Wa!er(&?l}lmn‘) NDVI CH1 Land (974.0/103.0)‘ Water @TB/S&I)}‘ CH2
/N AN AN
<=0.1509 > 0.1509 <=14.35 >14.35 <=645 »645
/ \ / AN / N\
Water gsg.ma.a;j\ Land (195.052.0)‘ Water (13.01 n)\ Land (12.0/2.0)‘ Water '(s.nm.n;j Land (61.0/9.0)‘

Figure 4.3. An example of decision tree structueawkd from the MODIS observations with the
C4.5 algorithm.

Rulesets:
Table 4.2. Rule sets generated from the C4.5 dlyori
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Rule# | CH1 CH2 | (CH2-CH1)| NDVI NDWI Class | Accuracy
19 >9.17 Land 99.9%
18 >6.45 >0.5335 Land 99.89
15 >2.91 >0.228 <=0.2872 Land 99.6%
9 <=1.02 <=2.91 Water  99.2%
10 <=2.91 <0.1509 Water  99.0%
12 <=2.91 >-0.2931| Water 97.7%

Each rule consists of:

« Arule number -- this is quite arbitrary and serea$y to identify the rule.

« The set of rules usually consists of at least aies which is used to classify unseen
instances when no other rule applies.

- Every enumerated rule is composed of attributeesmbnd a resulting classification,
followed by a percentage which represents the acguwf that rule.

For example, Rule 9: GH1.02% and CH2<=2.91%, this rule is accurate 99.2%etime for
water classification.

Rule 19: CH-CH; > 9.17%, this rule has accuracy of 99.9% for leladsification.

Confusion matrix:

Table 4.3. The confusion matrix from the C4.5 test.
Classified Water (1) | Classified Non-water(0)

Validation Water (1) 10235 284
Validation Non-water (0) 238 37707

The node in the upper level of the decision treeahhigher information gain ratio than in the
lower level node in the classification. Therefdres reflectance difference (CH2-CH1), which
appears at the root node of the decision treepig important than those in the lower level, such
as the NDVI, NDWI, NDVI, NIR reflectance differen€H, and visible reflectance GHor
reflectance ratio CHCH; between the MODIS Ciand CH, in identifying the water.

The threshold values from the observation datalidierent from the simulation results, which
show the CHreflectance is the only effective attribute, ané threshold value is 2.65562%.
However, for real observation data, the rules asehmore complicated: there are several
effective attributes with multiple threshold valuasd the total error is 1.6%, which equals an
accuracy of 98.4%, and is lower than the simulasiocuracy of over 99%. Nevertheless, all
algorithm performance tests at 1km resolution ag# above the required accuracy of 60%.
Remember that due to difference in central waveteagd spectral response functions of the
visible/near infrared channels, algorithm thresh@tles applied for different satellite sensors
may be different.
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Considering that because the surface reflectangehanae anisotropic effects, we tested the
BRDF-adjusted nadir reflectance data (MCDA43). Téwmults show that over the same sample
area, the attributes at the top of the outputdtaecture are the same. Figure 4.4 gives an
example for samples around the Mississippi Rivérens the reflectance difference (CH2-CH1)
is the most useful attribute to identify inland erafrom land. However, it is noted that the
threshold values are different. For the BRDF-adjdseflectance data, the ratio CH2/CH1
appears at a lower level in the tree structurepdagk a critical role to separate land from water,
but may still be less important than the differe(€el2-CH1), which appeared at the top level of
the tree structure (Sun and Yu, 2010).

(CH2-CHY)
T
B e
s . TR
(CH2-CH1) CH2
e Pt
<229 >29 <=3015  >3015
=i S & =
Water (2382.077.0) (CH2-CH1) Water (1834.0) NDVI
=i -
=397 »397 <=01754  >01754
R . — : i
CH! Water (1644.0) CH2/CH1
T T s
=413 >4 <=14284 > 14254
o R ; o o
CH2 Land (15.0/2.0) Waler (1644.0)) Land (37700.01190.0)
P
<=30765  >30.765
ol ey
CH2/CH1 Land (7318.0)
SR
<=850755 > 850755
Pt B
NDVI Land (6660.0/2.0)
P
<=0.78965 > 078965
Ve )
CH Land (6659.0/2.0)
P
=415 »4115
- -~

Waler (1720740)  Land (286.0220)

Figure 4.4. An example of Decision Tree structuggwed from the BRDF adjusted surface
reflectance data with the samples around the Msggis River using the C4.5 algorithm.

Reflectance in the NIR band (e.g., MODIS CH2) rgddy affected by water types. Turbid water
usually has a higher reflectance in the NIR bara ttlean water. When water is contaminated
by blue-green alga, the NIR reflectance may in@eagnificantly and become even much higher
than the visible reflectance (e.g., MODIS CH1). iEfiere, with the increase of water turbidity
after flooding, the ratio CH2/CH1 may become maseful than the difference (CH2-CH1).
Since we do not have land cover data for afterefiog situation, we tried to manually identify
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water and land using the RGB composite imagesttammatch with the reflectance data. The
output tree structure is too complicated to be detefy shown in a figure. The results
demonstrate that the CH2 reflectance appears abphef the tree structure; meanwhile, the ratio
does appear at a number of leaf nodes in the tineefgre, sometimes even at the upper nodes
than the difference (CH2-CH1), indicating that theo CH2/CH1 may be a more useful
parameter to identify turbid water from land thha tifference (CH2-CH1).

It may need to note Figures 4.3 and 4.4 just stmwmesexamples of DT tree structures. The real
DT model may be more complicated, and can’t be ehenvn in one figure.

4.3.1.3 DT training with additional Surface Temperature (ST) data

LGN

Figure 4.5. MODIS land surface temperature overttheing area on sate date (May 28,
2008).

From Figure 4.4, we can see water temperatureuiallydower than land surface temperature. If
we include surface temperature as an additiondbate for the training, the results are shown
below.

Decision tree:

CH,/CH; <= 1.52025 :

ST <= 289.24 :
| CHICH, <= 1.23318 : Water (2584.8/18.5)
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CH/CH, > 1.23318:
CHCH; >9.79 : Land (6.0/1.2)
CHCH; <=9.79:
CH<= 1.65: Water (24.0/1.3)
CH>1.65:
| CHCH; > 1.16 : Water (47.0/8.3)
| CHCH;<=1.16:
| | ST>288.64: Water (2@y1.
| | ST <=288.64:
| | | NDVI<=0.141678 : Lghd/1.2)
| | | NDVI>0.141678 : W&0/2.1)
T >289.24:

ST <=295.28 :
NDVI <= 0.0836654 : Water (540.0/95.6)
NDVI > 0.0836654 :
| CHCH;>8.29: Land (12.0/1.3)
CHCH; <=8.29:
| CH<=1.23: Water (14.0/1.3)
| CH>1.23:
| | GHCH;<=0.42: Land (11.0/2.5)
| | GHCHy>0.42 : Water (138.0/53.5)
ST >295.28 :
| CH<=2.04: Water (52.0/18.9)
| CH>2.04:Land (198.0/71.2)
H,/CH; > 1.52025 :

CH-CH; > 7.63 : Land (110881.0/1558.6)
CH-CH; <=7.63:

| CH-CH; <=0.52: Water (79.2/1.4)
CH-CH; >0.52:

| ST >293.4:Land (2206.0/305.7)

| ST <=293.4:

| | ClH<=4.54:Land (332.0/162.8)

| | CH>4.54: Water (107.0/36.9)

_—— Yy — . ———
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Evaluation on training data (117242 items):

Before Pruning After Pruning

Size Errors Size Errors Estien

59 2250 (1.9%) 37 2257 (1.9%).098) <<
Rulesets:
Rule 15:

CH<=2.04%
CH/CH; <=1.52025
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-> class Water [96.5%)]

Rule 13:
CH-CH; <= 8.29%
CH/CH,; <= 1.52025
ST <= 295.28 K
-> class Water [94.5%)]

Rule 20:

CH-CH; <= 7.63%

ST <=293.4K

-> class Water [90.5%)]
Rule 22:

CH-CH; <=7.63 %

CH/CH; > 1.52025

ST > 302.82

-> class Land [99.2%)]

Rule 25:
CH-CH; > 7.63 %
NDVI > 0.680956
-> class Land [99.1%)]

Rule 17:
CH-CH; >5.22
ST > 295.28
-> class Land [98.8%)]

Rule 8:
CH-CH; > 9.79
-> class Land [98.7%)]

Rule 14:
CH-CH; > 8.29
ST >289.24
-> class Land [98.7%)]

Default class: Land
Evaluation on training data (117242 items):
Rule Size Error Used Wrong Advantage

15 2 3.5% 2832 91(3.2%)  2018p|Water
13 3 55% 588 100 (17.0%) 263%y|Water
20 2 9.5% 519 209 (40.3%) 101 (209) Water
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22 3 0.8% 1047 6(0.6%)  0)O|@and
25 2 0.9%31918 271(0.8%)  0)0|eand
17 2 1.2%68892 906 (1.3%)  0)0|@and
8 1 1.3% 10157 325(3.2%)  0)0lQand
14 2 1.3% 259 62(23.9%) 0)0|@and

Tested 117242, errors 2291 (2.0%) <<

Table 4.4. The confusion matrix from the C4.5 test.
Classified Water (1), Classified Land (0)

Validation Water (1) 3539 1891
Validation Land (0) 400 111412

Since surface temperature may vary significantiypwime, and spatial locations, thus including
surface temperature will introduce complexity anstability to the algorithms. Therefore, we
will not use surface temperature as an additiorediptor or attribute.

Antecedent precipitation should be a good attrilmuteredictor for Standing Water/Flood
detection; however, currently no satellite preeipan product can be available at 1 km
resolution.

4.3.1.4 “Future prediction” with the rules obtainedfrom training

Figure 4.6 shows water (values as 1 in blue) and (galues as 0 in green) distributions
determined by applying the tree structure (Figud9 dbtained from the training data before
flooding on May 28, 2008:

The “predicted” water bodies on June 14, 17, and008 by applying the rules from the
training (Table 2, Figure 4.4) are quite closeh® qualitative visual image analysis as shown in
Figure 3.4.

Figure 4.7 shows the resulting maximum flood magedaon differences between the water
maps after flooding on June 17 and 19 and beforalthg on June 14, 2008 as shown in Figure
4.6.

52



06/14/2008 e

06/17/2008

Figure 4.6. Spatial distributions of water (bluajid (green) identifications over time
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Figure 4.7. The maximum flood extent map durirgfihod period (original water body is
shown in blue, flood is shown in red, and landhigven in green).

We applied these CHeflectance and NDVI predictors and threshold &alfrom the training
data at the Midwest of the United States on May2288 to “re-predict” the New Orleans
flooding at the end of August in 2005 due to thedfall of Hurricane Katrina, which caused
over 1500 deaths and damage exceeding $50 bilkigure 4.8 shows the MODIS channels 7,
2, and 1 RGB composite images on August 30 andt8d flooding, and August 27 before
flooding. Figure 4.9 shows the water identificatmap on these three days calculated by
applying the CHreflectance and NDVI predictors and threshold @aluFrom these images, we
can clearly detect the flood areas by comparingmaaction maps after flooding with those
before flooding. Figure 4.10 depicts the flood naagghe difference in water detection values
after flooding on August 31 and 30, with those befitooding on August 27. The flooded
regions are identified in red colors, the originalter bodies are shown in blue color, while
clouds are marked in grey color. We can see Vegrly that New Orleans and its surrounded
areas were inundated on August 30 and 31, 2006Hifteicane Katrina made landfall on
August 29, 2005.
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Figure 4.8. MODIS RGB composite images on AugugaPand 30 (b), 2008.
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Figure 4.9. Water identification map on August aggder) and 30 (lower), 2005 (water: blue;
Green: Land or Non-water; white: clouds; cloud sbad grey)
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Figure 4.10. Flood map on August 30, 2005 showthasvater difference between August 30

(after flooding) and August 27 (before floodingluéa original water body, red: flood, white:
clouds, black: cloud shadow, and green: land).

4.3.2 Test with the proxy SEVIRI data

In the SEVIRI data test, several attributes, inclgdSEVIRI channel 1 (CH1), channel 2 (CH2),
the difference (CH2-CH1) and ratio (CH2/CH1) betw&H2 and CH1, NDVI, are employed as
predictors.

4.3.2.1 Data used for training

The reflectance value of CH1 and CH2 are obtainecbinverting the original digital count to
radiances and then to reflectance. The differerat® and NDVI values are calculated in the
preprocessing stage. Regions of interest are eé&ttawanually according to 18-classes IGBP
map, which all non-water classes are combinedlartd class. The ROIs acquired by different
date and time are merged into a large trainingvgetover 110000 records, and the tree structure
from the training with the 5 bands SEVIRI data gdine C4.5 algorithm (See Figure 4.11).
Figure 4.11 shows that NDVI is the most useful pted to separate water from land, and the
ration and the CH1 are also used in the subsegai@eigion. It is worth noting that the tree
structure is not fixed for different datasets. Tis@e the discriminative power, the C4.5
algorithm may select different leaf nodes and $tmec
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4.3.2.2 “Future prediction” with the rules obtained from tr aining

The tree model from the training is applied to 18BVIRI observations. It has been discovered
that if the solar zenith angle (SZA) is greatentba® at 15:15 UTC, as shown in Figure 4.12,
then misclassification may happen. The reasorhieri$ the low illumination under large SZA
conditions (Figure 4.12 lower). For normal illuration conditions, such as at time of 12:00
UTC (Figure 4.13)when SZA is less than 67°, then no obvious misifieason may happen.
Therefore, the FSW product requirement under th& ©2e less than 67° is quite reasonable.
In our product, the pixels with large zenith angissvell as large satellite zenith angles are
masked out as no-data.

We applied the standing water identification altjori to a Mozambique flood case occurred on
March 8, 2010. The tree structure only includesdifference of the reflectance values of the
Ch1 and Ch2 as the predictor in the model, whiagbigained from training data of flood cases.
Fig 4.14 shows the MODIS composite images on M&Fl&d) and Mar. 12 (After flood), and
Fig. 4.13 demonstrates the Flood/Standing Watentifilzation map, where red pixels are flood.
Comparison with the IGBP 18 classes land cover magged into the reference water/land map
is made to derive the flood pixels. Fig 4.15 ioarmed view of the red box in Fig 4.13 to show
the detailed flood coverage. Because the spasalugon of the SEVIRI is much lower than the
resolution of the MODIS, the identified flood coage is much smaller than the coverage in

MODIS composite images.
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Figure 4.11. An example of decision tree structiggved from the SEVIRI observations with
the C4.5 algorithm.
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Figure 4.12. Water (blue)/Land (green) derived fr8EVIRI observations at 15:15 UTC
on12/25/2007.
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Figure 4.13 Flood (Red), Water (Blue) and Land (@rederived from SEVIRI observations at
12:00 UTC on 3/8/2010
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Figure 4.14 MODIS RGB composite images on Marangp€r) and March 12 (lower)
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Figure 4.15 Flood map on 12:00 UTC, March 8, 20{Diginal water body is shown in blue,
flood is shown in red, land is shown in green amitevpixels are cloud).

4.4  Precision and Accuracy Estimates

The accuracy of flood identification is determir®dthe accuracy of water body detection.
Since there is no flood map available for MODIS &#&VIRI data now, we can easily think
about using ground truth of land cover/land usesifecation to validate GOES-R FSW
preliminary product: yes/no water identificationglie 4.16 shows the comparison of
water/non-water identification map from the MODISservations with the ground truth of
water/land classification map. Some land pixelhatwest area of the Great Lakes were
misclassified into water, an error known as a cossion error. The quantitative validation result
is listed in Table 4.5. The producer’s accuracywater identification, which is equal to (100%-
omission) is 98.38%, the user’s accuracy, whidamsal to 100%-commission rate, is 84.91%.
The correction classification rate refers to praataccuracy. The total accuracy for both
water and non-water classification is 98.36% wailpa coefficient of 0.90. For testing with the
proxy SEVIRI data, we can see that some small waidy cannot be detected (Figure 4.17),
which may be due to the coarse resolution of thélBEdata (3km). The producer’s accuracy
for water detection is 99.87%, and user’s accura®p.88%, which is higher than 84.91% from
the MODIS testing. The higher accuracy rate isabee less commission error occurred with the
SEVIRI observations. The total accuracy for bothewand non-water classification is 99.37%
with kappa coefficient of 0.99 (Table 4.6).
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Figure 4.16 Water/land classificeon from the C4.5 DT algorithm with the MODIS su#
reflectance data on 05/20/200eft) and ground truth of water/land classificatioright)

Figure 4.17 Water/land classification from the C4.5 DT alghm with the SEVIRI data
11:45 UTC on 125/2007 (left) and Ground truth of water/land ddiation (right
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Table 4.5. Validation results from the proxy MODk8a

Validation Data: MODIS IGBP Land Cover Map (pixels)

MODIS Classified Classified

Classification Non-Water (0)] Water (1)
05/20/2008 |  validation

Non-Water (0) 5185738 9433

Validation

Water (1) 85212 479617

Total pixels 5270950 489050

Validation Data: MODIS IGBP Land Cover Map (%)

MODIS Classified Classified Producers
Classification Non-Water (0)| Water (1) Accuracy
05/20/2008 Validation 98.38% 1.93% 98.38%
Non-Water (0)
Validation 1.62% 98.07% 98.07%
Water (1)
Users 99.82% 84.91%
Accuracy
Total 98.36%
Accuracy
Kappa 0.90
Coefficient
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Table 4.6. Validation results from the proxy SEVRI{a

Validation Data: SEVIRI IGBP Land Cover Map (pixels
SEVIRI Classified Classified
Classification Non-Water (0) | Water (1)
12/25/2007 Validation 2445680 29528
Non-Water
)
Validation 3146 2698957
Water (1)
Total pixels 2448826 2728485
Validation Data: SEVIRI IGBP Land Cover Map (%)
SEVIRI Classified Classified Producers
Classification Non-Water Water (1) Accuracy
12/25/2007 0)
Validation 99.87% 1.08% 99.87%
Non-Water
(0)
Validation 0.13% 98.92% 98.92%
Water (1)
Users 98.81% 99.88%
Accuracy
Total 99.37%
Accuracy
Kappa 0.99
Coefficient

45 Cloud Detection on GOES-R ABI Data

Since we are going to use the GOES-R imager AR ttatletect Standing Water/Floods and the
visible and infrared measurements cannot pendtratelouds, accurate cloud filtering for the
Imager data is critical for reliable results. Imped cloud treatment over snow in the shortwave
satellite inference scheme has been developed éLi,2007; Pinker et al., 2007) and is ready
for use. This algorithm uses four GOES-8 chanmetd,ding visible channel 1 (0.Gvm, similar

to ABI channel 2), middle infrared channel 2 (88, similar to ABI channel 7), infrared

channel 4 (10.2m, similar to ABI channel 14), and channel 5 (1220, similar to ABI channel
15), and can be applied to detect cloud during dathand night. We can apply this algorithm
for cloud screening.

In general, most clouds cause enhanced reflecemtéower brightness temperatures (except
the low level warm clouds) relative to the surfa8erow conditions can be identified from image
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sequences, since snow pixels generally tend t¢aie #om one hour to the next hour while
clouds move.

Second, if the 11 um channel brightness temper&uo® low (less than 250 K) then most

likely the pixel is cloudy. In addition, the abstd brightness temperature difference between 11
pm and 12 pum channels, and 11 um and 3.9 um clsaisheluld be in general less than 1.5 K
for identifying the pixel as cloud-free.

When the GOES-R ABI cloud mask data is availabkecan use this product directly to filter
the clouds.

4.6 Error Budget

The algorithm accuracy and product accuracy mayiferent for our FSW product.
The algorithm accuracy will be determined by theusacy of water classification. The flood is
identified by comparison of water classificatiorridg flood period with a normal reference
water map. So the product accuracy should alsogpiiyrbe determined by our preliminary
product: water classification. The accuracy fgoathm accuracy is compared at Table 4.7.

Table 4.7. Comparison of Algorithm Accuracy Estesawith the Requirement

With Proxy MODIS data | With Proxy SEVIRI data) Requirement

98.07% 98.92% 60%

Since there is no real ground truth for flood/stagdwater, the river flood forecasting and
outlook from the NOAA/NWS and USGS may be used \taleate our product accuracy for
flood detection. But they are some kind of foreiwastnot ground truth either. Moreover, they
are usually for river discharge and surface elevatiata in GIS vector format, how to convert
these data to FSW detection is currently undernessy It is expected we can complete these
evaluation/validation works at the time of 100%dieass.
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5. PRACTICAL CONSIDERATIONS

5.1 Numerical Computation Considerations

We selected the C4.5 DT as our baseline algoriteoabse it is easily implemented and runs
fast. Once the rules are obtained from the trairtimg Flood/Standing Water algorithm is
mathematically simple and requires no complicatethematical routines. In operations it will
be robust and rapid with run time less than 1 naniterms of the algorithm latency
requirement (< 15 minutes, goal) using current cat@ppower. There is no specific numerical
computation requirement needed. For storage camgide, 1/0 (FSW/Non-FSW) values should
be saved in one-byte integers. Quality flags fahgaixel value should be bit-flag definitions, to
minimize data storage.

5.2 Programming and Procedural Considerations

The Flood/Standing Water algorithm is a purely pixgpixel algorithm, implemented in
sequential mode. Because of the algorithm simgliditequires a small amount of code with
basic mathematical routines. However, the Flooak8tey Water algorithm requires ancillary
datasets such as cloud mask data, pre-trainedantethreshold values for identifying water
bodies to the ABI pixel geolocation. The algoritpnocessing routines should be programmed in
block functions to felicitate implementation. Alingh we selected a well-established and mature
decision tree algorithm, since different satekigmsors may have different bandwidth, sensor
response function, and calibration, to make thersoé flexible and applicable to different
sensors, we developed our own codes.

5.3 Configuration of Retrieval

The primary adjustable parameters for the FloodkBtey Water retrieval are the rules and
threshold values from the training data. Thesesthold values should also be adjustable in
order to optimize the algorithm, if needed, basedhe results of post-launch validation. The
source of ancillary datasets should be configureil¢he best dataset. And finally, it should be
noted that metadata used for the product may befietdeduced and added during late phases
of the product generation.

5.4 Quality Assessment and Diagnostics

The Flood/Standing Water detection will be asseaseldmonitored. First, a set of quality
control flags will be generated with the yes/no FBMduct for retrieval diagnostics. The quality
control flags will indicate the retrieval condit@nncluding the water/non-water surfaces (i.e.,
ocean, coast, snow/ice, water etc.), etc. Sin¢eataihce data for the visible channel is needed,
Yes/No FSW maps will be generated only during thgide.
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5.5 Exception Handling

The algorithm will handle exceptions through thalgy control flags. In identifying the
FSW/Non-FSW for each pixel, quality control flagsrh input datasets will be examined and
skipped for bad sensor data (e.g., missing or neawalata) or cloudy pixels (i.e., “cloud” and
“probably cloud”).
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6. ASSUMPTIONS AND LIMITATIONS

6.1 Performance

First of all, because the Standing Water algoritequires ancillary datasets, it is assumed that
following data are available before the Water Roactetrieval is performed:

1) the ABI cloud mask;

2) a high quality dynamic land surface reflectancaskit

Specifications regarding sensor performance augess to be those described in the MRD.

6.2 Assumed Sensor Performance

The algorithm described in this document performthe visible and near-infrared spectral
bands. It is applicable only during daytime on diess pixels. The retrieval accuracy may be
reduced significantly near the edges of clouds.

6.3 Pre-launch Product Improvements

There are two general areas of prelaunch prodymtowement: better and more accurate
validation and refinement of the FSW algorithm.

6.3.1 Improved Validation Methods

The difficulties of validating satellite retrievadgjainst ground observations are well known and
common to a lot of satellite products. These idelunknown error characteristics of algorithm
and satellite retrievals and calibration uncertasin the satellite sensor. The only ground truth
we can use for GOES-R yes/no FSW detection is titenmon-water classification merged from
land cover/land use map, but this map is usually available during normal conditions. During
flooding period, the only available source is tiver flooding forecast and outlook maps from
the NOAA National Weather Services (NWS), as welttee map of river flooding from the
USGS; however, these maps are not direct Floodd8tgrWater identification maps, and are not
the ground truth of flooding either. Efforts tone@rt these river flooding maps into FSW
identification maps to evaluate flood/standing waletection during flood period will be
pursued in the pre-launch period. The method i®ebegal to allow statistically significant error
estimates to be made about each source of databthieelping specify the error in the satellite
FSW.

High resolution ASTER data from the Terra satebitel ETM+ data from the Landsat
observations may be used in this effort. A catibrdvalidation system is being developed and
will be implemented first using real time MODIS ali@teosat SEVIRI data as proxies for the
ABI. FSW algorithms for the SEVIRI data as thexy6&OES-R ABI type imager will be used.
In addition, studies of the GOES-R algorithm asliado the proxy MODIS data will also be
done. Knowledge gained from these studies will $eito improve the algorithm.
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6.3.2 Algorithm Improvement

As seen from our training results, the simulatiatacjave the simplest tree structure with the
highest accuracy. This was achieved because tlserseoise and calibration errors were not
included. If we applied the tree structure from titaéning with the simulation data, then it is
possible for a large error to occur. Similarlye thee structure from the training with the proxy
MODIS data may not be applied well to the proxy $EMbservations, because the calibration
and band spectral properties are different betvi#®DIS and SEVIRI. We will provide

SEVIRI and MODIS test data simultaneously to AlTihe delivered software package. Instead
of using threshold values directly, we use a pattecognition method; therefore, the detailed
tree structure and the specified threshold valoelke tree are not very important. Our FSW
software will read and parse the model file autacadly. There will be no hard code for
threshold values in our software. The SEVIRI an@MS data are just used as the proxy
GOES-R ABI data, and our algorithm will process ABita after launch.

Due to the close spectral features of cloud shaalmwvater, the cloud shadow may be
misclassified into water. We have already worketlasualgorithm for cloud shadow detection.
A second contributor to FSW uncertainty is the aingpic effect of surface reflectance as seen
from the observing geostationary satellite like ®@ES-R. This effect arises due to high solar
zenith angle (SZA) during early morning or lateeafioon when the shaded surfaces are
significantly darker than the sunlit surfaces, tirepa low reflectance over land which may
cause misclassification. Although the majoritysath conditions can be filtered out by working
only for pixels with SZA less than 67 °, small nianbf cases may still be left for SZA greater
than 60°. If the GOES-R albedo product can proB®F adjusted nadir reflectance data then
this would cease to be a cause of concern to oW pi®duct. For sun glint contamination,
which may occur over the coastal area, we canfifisid the glint condition by using geometry
method, and then we will be able to use NDVI taniifg water under glint conditions. All of
these factors should be considered for the FSWigigo and finding solutions to these
problems is planned.
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