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ABSTRACT 

 
This Algorithm Theoretical Basis Document (ATBD) describes in detail the procedures for 
developing and using a flood/standing water (FSW) algorithm designed for the GOES-R 
Advanced Baseline Imager (ABI).  It includes a description of the requirements and 
specifications of the FSW products and some specific information about the ABI that is relevant 
to the derivation of the FSW products.  The main part of the ATBD is a description of the 
science of the proposed ABI FSW algorithm.  The process of algorithm selection is documented 
and includes a review of satellite FSW research.  The simulated radiances were calculated using 
sensor spectral response functions (SRF) that are expected from the actual ABI instrument.  A 
description of the expected implementation of the FSW algorithm is provided and ancillary data 
sets needed for the FSW calculation are listed. 
 
In order to find the best DT approach, eleven decision tree (DT) algorithms, including the 
J48graft or J48, which is based on the C4.5, NBTree (a Naïve Bayes/Decision Tree hybrid), 
Random Tree, Random Forest, REP Tree, BFTree, Decision Stump, FT (final tree), and CART 
(Classification and Regression Trees) were adapted from the literature for evaluation as the Day 
1 GOES-R FSW algorithm. The algorithm with the best accuracy and easiest implementation, 
the J48 or C4.5, was selected as our baseline algorithm. 
 
The selected algorithm was applied to the proxy MODIS and SEVIRI data. The retrieved FSW 
preliminary product: yes/no water detections were compared against independent ground truth 
data and the results were analyzed.  The properties of the algorithm were examined for selected 
cloud shadow conditions, time of day and illumination/observation geometry effects, and a 
variety of surface types.  The algorithm was found to meet specs with the test data sets. Perfectly 
cloud free data is assumed in all testing of the ATBD research. A process for routine evaluation 
of the operational GOES-R FSW is described; this includes an automated cloud shadow 
detection algorithm, routine matchups against ground truth and methodology for product 
evaluation.  Finally, practical matters, such as computer resources, instrument performance and 
its effects on the product are considered. 
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1.  INTRODUCTION 

The purpose, users, scope, related documents and revision history of this document are briefly 
described in this section. Section 2 gives an overview of the standing water retrieval objectives 
and operations concept. Section 3 describes the baseline algorithm, its input data requirements, 
the theoretical background, sensitivity analyses, and error budgeting. In section 4, testing cases 
were presented using MODIS data and SEVIRI data as proxies. Some practical considerations 
are described in Section 5, and some assumptions and limitations associated with the algorithm 
are described in section 6. Finally, Section 7 presents the references cited.  

1.1. Purpose of This Document 

This Algorithm Theoretical Basis Document (ATBD) explains the physical and mathematical 
background for an algorithm to derive the standing water/flood product as a part of the 
requirements for the Advanced Baseline Imager (ABI). ABI is the primary visible and infrared 
instrument to be flown aboard the platform of the Geostationary Environmental Operational 
Satellite (GOES) R series (GOES-R) of NOAA meteorological satellites. This document 
provides an overview of the required input data, the physical and mathematical backgrounds of 
the described algorithm and its predicted performance, sensitivity study of the algorithm, 
practical considerations, and assumptions and limitations.  
 

1.2. Who Should Use This Document 

The intended users of this document are those interested in understanding the physical basis of 
the standing water algorithm and how to use the output of this algorithm for a particular 
application.  This document also provides information useful to anyone maintaining or 
modifying the original algorithm.  

1.3. Inside Each Section 

This document covers the theoretical basis for the derivation of the Standing Water product from 
ABI data. It is broken down into the following main sections: 

• System Overview: provides objectives of the Standing Water algorithm, relevant details 
of the ABI instrument, and a brief description of the product requirements. 

• Algorithm Description : provides all the detailed description of the algorithm including 
its physical basis, its input and its output. 

• Assumptions and Limitations: provides an overview of the current limitations of the 
approach and gives the plan for overcoming these limitations with further algorithm 
development. 
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1.4. Related Documents 

This document may contain information from other GOES-R documents listed in the website 
provided by GOES-R algorithm working group (AWG): 
http://www.orbit2.nesdis.noaa.gov/star/goesr/index.php.  
 
In particular, readers are directed to read these documents for a better understanding of this 
ATBD: 
 GOES-R Series Ground Segment Functional and Performance Specification 
 GOES-R Series Mission Requirements Document  
 GOES-R Algorithm Theoretical Base Document for ABI Cloud Mask 
 GOES-R Land Surface Team Critical Design Review   
  
Other related references are listed in the Reference Section. 
 

1.5. Revision History 

Version 0.1 of this document was created by Dr. Donglian Sun of GMU, with its intent being to 
accompany the delivery of the version 0.5 algorithms to the GOES-R AWG Algorithm 
Integration Team (AIT). The document was then revised following the document guideline 
provided by the GOES-R Algorithm Application Group (AWG) before the version 0.2 delivery. 
In 2010 summer, version 1.0 of the document was prepared by Dr. Donglian Sun and Dr. Rui 
Zhang, which includes some new results conducted from the algorithm Critical Design Review 
(CDR) and the Test Readiness Review (TRR), as the algorithm 80% readiness document. 
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2. SYSTEM OVERVIEW 

This section will describe objectives of the Standing Water algorithm, details of the ABI 
instrument, and the product requirements. 
 

2.1. Products generated 

Floods are usually disastrous events occurring in short period of time. For this reason, satellite-
derived flood maps, available in near-real time, are invaluable to stake holders and policy makers 
for disaster monitoring and relief efforts. Precise mapping of the floods/standing water is also 
required for detecting deficiencies in existing flood control and for damage claims afterwards.  
 
Satellite sensors used in river/flood studies may be classified into two types: (1) passive, in 
which the sensor receives energy naturally reflected by or emitted from the earth's surface; and 
(2) active, in which the sensor provides its own illumination and records the amount of incident 
energy returned from the imaged surface (Smith, 1997). Passive sensors include all of the visible 
and infrared instruments such as the Landsat Thematic Mapper (TM) and Multi-Spectral Scanner 
(MSS), the Advanced Very High Resolution Radiometer (AVHRR), the Satellite Pour 
l'Observation de la Terre (SPOT) and the Advanced Spaceborne Thermal Emission and 
Reflection Radiometer (ASTER), Moderate-Resolution Imaging Spectroradiometer (MODIS) 
and Landsat-7 sensors. The Advanced Baseline Imager (ABI) aboard future GOES-R belongs to 
this type of sensor. 
 
In microwave spectrum, passive sensors such as the Special Sensor Microwave/Imager (SSM/I) 
aboard the defense meteorological satellites and active (radar) sensors such as RADARSAT 
(Bonn and Dixon, 2005) are excellent tools for monitoring floods since they can penetrate 
clouds, which usually occur during flood periods, and measure the microwave energy naturally 
emitted from the Earth's surface. If absent of vegetation or tress, radar returns are usually low 
over the smooth open water surface. This characteristic allows flood extent to be determined 
with good accuracy under multiple conditions. However, turbulence, wind-induced waves, 
vegetation and/or tress mixed with flooded water, can all cause significant increases in radar 
back-scattering, making inundation extent difficult or impossible to determine. Moreover, 
interpretation of SAR imagery is less straightforward than it is for the visible/infrared range.   
 
As an advanced visible and infrared imager aboard the next generation GOES-R system, the 
potential of GOES-R ABI data in large area flood monitoring should not be ignored.  Although 
the ABI offers coarser spatial resolution than many polar-orbiting sensors such as MODIS and 
LANDSAT, the high temporal resolution of geostationary satellites (5 minutes for the ABI), 
make them very useful for dynamic monitoring of flood events, because they usually occur 
quickly.  Compared to the previous GOES series, the new near-infrared channel 3 (0.86 µm) of 
the GOES-R ABI makes it suitable for monitoring Standing Water/Floods. In the age of climate 
change, severe floods appear to be occurring more frequently than in years past. This makes the 
GOES-R ABI observations more attractive in dynamic flood monitoring.  
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In the GOES-R program, the Flood/Standing Water Identification accuracy requirement is 60% 
for all the four ABI scanning modes (i.e., full disk, hemisphere, CONUS, and mesoscale).  A 
primary objective of the GOES-R Flood/Standing Water development team is to provide a state-
of-the-art Flood/Standing Water identification algorithm that meets the GOES-R mission 
requirement. 
 
The Flood/Standing Water requirements defined by the mission requirement document (MRD) 
and the Ground Segment Functional and Performance Specification (GS-F&PS) are listed in 
Table 2.2. 

2. GOES-R mission requirements for Standing Water. 
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Water: 

Hemisphere 
T FD 1 km 5 km 0-1 

Probability 
of correct 

classification 
to 60% 

60 min 3 min TBD LZA <67 

 G FD 1 km 1 km 0-1 60% 15 min 1 min TBD LZA <70 
Flood/Standing 

Water: 
Mesoscale 

T M 1 km 1 km 0-1 

Probability 
of correct 

classification 
to 60% 

60 min 3 min TBD LZA <67 

 G M 1 km 0.5 km 0-1 60 15 min 1 min TBD LZA <70 
1 T=target, G=goal, LZA=Local Zenith Angle 
2 C=CONUS, FD=full disk, H=hemisphere, M=mesoscale 
 
First of all, the ABI cloud mask will be used for cloud detection. Yes/no Flood/Standing Water 
retrieval in each scanning mode will be performed on each cloudless (i.e. “clear” and “possible 
clear” indicated by the cloud mask) pixel, during the day-time. Decision Tree technique will be 
applied to derive the rules and threshold values through the training (learning) process. Then the 
rules obtained from the training process will then be applied to “predict” or model “future” 
standing water. The resultant map is made by comparing to a reference non-flooding water mask 
to identify deviations which are then labeled as flood. Finally, the Yes/No Flood/Standing Water 
detection quality will be indicated with a set of quality control flags which are either generated in 
the Flood/Standing Water retrieval process or passed from the input data. The quality flags are 
assigned to each pixel. 

 
 
Finally, algorithm simplicity and robustness is also a concern in order to produce the 
Flood/Standing Water identification product every fifteen minutes, which is the goal of ABI 
FSW product refresh rate. 
 

2.2 Instrument Characteristics 

The ABI will be a critical mission on GOES-R, providing over 60% of all the mission data 
products currently defined.  Similar to the current GOES imager, ABI will be used for a wide 
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range of qualitative and quantitative weather, oceanographic, climate, and environmental 
applications. ABI will offer more spectral bands, higher spatial resolution, and faster imaging 
rate than the current GOES imager. Its spatial resolution will be nominally 2 km for the infrared 
bands and 0.5 km for the 0.64 µm visible band. While the instrument will allow a flexible 
scanning scenario, two basic modes are envisioned. One mode is that every 15 minutes ABI will 
scan the full disk (FD), plus 3 times continental United States (CONUS), plus a selectable 1000 
km ×1000 km area every 30 seconds. The second mode is that the ABI can be programmed to 
scan the FD iteratively. The FD image can be acquired in approximately 5 minutes. The current 
GOES imager takes approximately 25 minutes for a FD; GOES-R will provide a fivefold 
increase in the coverage frequency (Schmit et al., 2004, 2007). 
 
ABI has 16 spectral bands; five are similar to the 0.6-, 4-, 11-, and 12- µm windows and the 6.5-
µm water vapor band on the current GOES-8/-9/-10/-11 imagers (Menzel and Purdom, 1994; 
Ellrod et al., 1998), and another is similar to the 13.3 µm on the GOES-12/-N/-O/-P imagers and 
the GOES-8/-P sounders (Hillger et al., 2003; Schmit et al., 2002). Additional bands on the ABI 
are 0.47 µm for aerosol detection and visibility estimation; 0.865 µm for aerosol detection and 
estimation of vegetation index and health, and Standing Water/Floods; 1.378 µm to detect very 
thin cirrus clouds; 1.6 µm for snow/cloud discrimination; 2.25 µm for aerosol and cloud particle 
size estimation, vegetation, cloud properties/screening, hot-spot detection, moisture 
determination, and snow detection; 7.0 and 7.34 µm for midtropospheric water vapor detection 
and tracking and upper-level sulfur dioxide (SO2) detection; 8.5 µm for detection of volcanic 
dust clouds containing sulfuric acid aerosols and estimation of cloud phase; 9.6 µm for 
monitoring atmospheric total column ozone and upper-level dynamics (Steinbrecht et al.1998); 
and 10.35 µm for deriving low-level moisture and cloud particle size. Each of these bands is 
often used in conjunction with other bands in a multiple spectral approach for product 
generation. Channel specification of the ABI is given in Table 2.1. The advanced design of ABI 
will provide users with twice the spatial resolution, five times the scan rate, and more than three 
times the number of spectral channels compared to the current GOES imager (Schmit et al., 
2007). These improvements will allow future meteorologists and climatologists to significantly 
improve the accuracy of their products, both in forecasting and nowcasting. 
 

Table 2.1. Spectral characters of Advanced Baseline Imager. 

Channel 
Number 

Wavelength 
(µm) 

Bandwidth 
(µm) 

NEDT/SNR 
Upper Limit 
Of Dynamic 
Range 

Spatial 
Resolution 

1 0.47 0.45 – 0.49 300:1[1] 652 W/m2/sr/µm 1 km 
2 0.64 0.59 – 0.69 300:1[1] 515 W/m2/sr/µm 0.5 km 
3 0.86 0.8455 – 0.8845 300:1[1] 305 W/m2/sr/µm 1 km 
4 1.38 1.3705 – 1.3855 300:1[1] 114 W/m2/sr/µm 2 km 
5 1.61 1.58 – 1.64 300:1[1] 77 W/m2/sr/µm 1 km 
6 2.26 2.225 – 2.275 300:1[1] 24 W/m2/sr/µm 2 km 
7 3.9 3.8 – 4.0 0.1K[2] 400K 2 km 
8 6.15 5.77 – 6.60 0.1K[2] 300K 2 km 
9 7.0 6.75 – 7.15 0.1K[2] 300K 2 km 
10 7.4 7.24 – 7.44 0.1K[2] 320K 2 km 
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11 8.5 8.30 – 8.70 0.1K[2] 330K 2 km 
12 9.7 9.42 – 9.80 0.1K[2] 300K 2 km 
13 10.35 10.10 – 10.60 0.1K[2] 330K 2 km 
14 11.2 10.80 – 11.60 0.1K[2] 330K 2 km 
15 12.3 11.80 – 12.80 0.1K[2] 330K 2 km 
16 13.3 13.0 – 13.6 0.3K[2] 305K 2 km 

[1]100% albedo, [2]300K scene.    Shaded channels are used for Water Identification. 
 
 
The water identification will be produced for each pixel observed by the ABI sensor. The FSW  
retrieval will rely on channels 2, 3, and 5 of the ABI data using decision tree technique and post-
class change detection method. 
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3 ALGORITHM DESCRIPTION 

A complete description of the algorithm at the current level of maturity (which will improve with 
each revision) is given in this section.  

3.1 Algorithm Overview 
Flood/Standing water is an important product in the GOES-R ABI processing system, and is on 
the development list of the GOES-R algorithm working group (AWG). The standing water 
algorithm is developed by the GOES-R AWG land team within the land module processing 
subsystem (Figure 3.1). The right side of the land module includes all land products or 
algorithms, such as land surface temperature, active fire, flood/standing water, surface 
reflectance/albedo, and vegetation index. The left side includes some common inputs for land 
product algorithms. 
 
The ABI Flood/Standing Water product is based on a decision tree algorithm to determine the 
presence of water, and applies visible and near-infrared observations and other auxiliary 
information. The resultant map is compared to a normal reference water mask to identify 
deviations, which are then labeled as flood. The algorithm will be tested using a radiative 
transfer model simulation dataset, and evaluated using a MODIS/SEVIRI proxy dataset. 
 

 

Figure 3.1. Products and dependencies of the land algorithm module. 
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Note that 1) Surface reflectance may be derived as an  intermediate product in the surface albedo 
derivation (if the MODIS-like algorithm is applied); 2) Aerosol optical thickness and surface 
albedo may be dependent in the aerosol algorithm and the albedo algorithm; 3) Surface 
reflectance may be required for deriving standing water and top-of-canopy vegetation index. In 
addition, the AWG cryospheric team requires the surface reflectance as a dependency of its 
products. 

3.2 Processing Outline 

The processing outline of the standing water product is summarized in Figure 3.2. The standing 
water retrieval is started by extracting ABI sensor datasets including channel 2, 3, and 5 
reflectances, pixel geolocation and the sensor data quality control flags. Afterwards, the process 
extracts ancillary datasets which can be categorized as ABI and non-ABI related datasets. The 
ABI related ancillary datasets include the ABI cloud mask and snow/ice mask, vegetation index 
and surface temperature, which are level 2 ABI products and were listed as dependencies in 
Figure 3.1. The non-ABI related datasets may include precipitation. More information on input 
datasets will be provided shortly in the Algorithm Input sub-section. Next, the ancillary datasets 
(precipitation) are mapped to the ABI pixel location. Then, the ABI sensor data is filtered using 
the cloud mask to ensure that only the cloud clear and probably clear pixels are processed for the 
standing water retrieval. Finally, the calculated water identification result and their associated 
quality control flags are combined with the flood/standing water product package and are written 
to files for user access.  

 

Figure 3.2. Flowchart of GOES-R ABI Flood/Standing Water algorithm. 
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There are two categories of change detection methods, prior-class and post-class. The prior-class 
detection method usually try to find the maximum changing extent during a period of time, and 
may be difficult to be applied to operational applications for every 60 minutes like the GOES-R 
FSW product.  Due to the strong water and land discrimination in the visible and infrared region, 
like the ABI sensor, we selected post-class change detection method.  The flood/standing water 
is detected by comparing water classification during the times of flood with reference water 
mapped during normal conditions.  From the first beginning, we made our selection from 
the perspective of operational implementation.  For water classification, we also chose the 
well-established and mature decision tree algorithm.   

3.3 Algorithm Input  

This section describes the input needed to process the standing water/flood product. While the 
standing water is derived for each pixel, ancillary datasets are required as well as the upstream 
ABI data. 

3.3.1 Primary Sensor Data 
The list below contains the primary sensor data used by the standing water retrieval.   Primary 
sensor data are derived solely from the ABI observations and geolocation information, or the 
level 1b data. Table 3.1 lists those input sensor data and their descriptions. 
 

Table 3.1. Input list of sensor data. 
Name Type Description Dimension 

Ch2 reflectance input Calibrated ABI level 1b reflectance at channel 2 grid (xsize, ysize) 

Ch3 reflectance input Calibrated ABI level 1b reflectance at channel 3 grid (xsize, ysize) 

Ch5 reflectance input Calibrated ABI level 1b reflectance at channel 5 grid (xsize, ysize) 

Latitude input Pixel latitude grid (xsize, ysize) 

Longitude input Pixel longitude grid (xsize, ysize) 

Solar zenith input ABI solar zenith angles grid (xsize, ysize) 

View zenith  input ABI view zenith angle grid (xsize, ysize) 

QC flags input ABI quality control flags with level 1b data grid (xsize, ysize) 

 

3.3.2 Derived Sensor Data 
 

There are two ABI derived sensor data sets (or the ABI related ancillary dataset quoted earlier) 
used by the LST retrieval: 1) the ABI cloud mask (ACM) product, which indicates four 
cloudiness conditions for each pixel: clear, probably clear, probably cloudy, and cloudy,  and 2) 
snow/ice mask which indicates if the pixel is snow or ice covered.  Table 3.2 briefly describes 
input of the derived sensor data. 
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Table 3.2. Input list of derived sensor data. 
Name Type Description Dimension 

Cloud mask input ABI level 2 cloud mask data grid (xsize, ysize) 

Snow/Ice mask  input ABI level 2 Snow/Ice mask data grid (xsize, ysize) 
 
In case the ABI snow/ice mask is not available at the GOES-R operational, the Interactive multi-
sensor snow and ice Mapping System (IMS) will be used for the snow/ice mask.  
 

3.3.3 Ancillary Data 
 
The following table lists and briefly describes the ancillary data required to run the Standing 
Water/Flood which are the non-GOES-R data that provide information not included in the 
primary sensor data or the previously computed GOES-R data. The static standing water map 
will be used as the reference non-flood map to identify flood pixels. The non-flood map could be 
generated from ABI data by our decision tree algorithm per month or per season when no flood 
occurs. Before the ABI data are available, the yearly static water/land map could be used, which 
usually compiled from the IGBP land cover map. 

Table 3.3 Input of ancillary data. 
Name Type Description Dimension 

Reference Normal 
or non-flooding 

water map 
input 

Water/land reference map or non-flood 
standing water classification map 

grid (xsize, ysize) 

Land/sea mask input A land-ocean and coast mask grid (xsize, ysize) 

IMS snow/ice 
mask* 

input 
Interactive multi-sensor snow and ice Mapping 

System 
grid (xsize, ysize) 

Cloud shadow 
mask 

input Cloud shadow mask grid (xsize, ysize) 

* IMS snow/ice mask is an alternative in case the ABI snow/ice mask is not available at the 
GOES-R operation.  
  

3.4 Theoretical Description  

3.4.1 Physics of the Problem 
 

The GOES-R ABI is a visible and infrared imager.  The interpretation of water identification by 
using visible/infrared remote sensing is relatively straightforward. According to the spectral 
characteristics, in the near-infrared (NIR) range (0.7-1.1µm), water has lower reflectance than 
vegetation and other land covers (Figure 3.3). On the contrary, water has slightly higher 
reflectance values than land features in the visible red (RED) band (0.5-0.7 µm). Therefore, the 
ratio image and the difference image between NIR and RED can be used to enhance the 
difference between water and land. In the ratio or difference image, water has extremely low 
value, while land has relatively high value. 
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Much of the pioneering work on the remote sensing of floods was accomplished using the Multi-
Spectral Scanner (MSS) sensor on the First Earth Resources Technology Satellite, later renamed 
Landsat-1. With a spatial resolution of about 80 m, MSS data were used to map the extent of 
flooding in Iowa (Hallberg et al., 1973; Rango and Salomonson, 1974), Arizona (Morrison and 
Cooley, 1973), Virginia (Rango and Salomonson, 1974) and along the Mississippi River 
(Deutsch et al., 1973; Deutsch and Ruggles, 1974; Rango and Anderson, 1974; McGinnis and 
Rango, 1975; Deutsch, 1976; Morrison and White, 1976). In all studies, MSS band 7 (0.8-1.1 
µm) was highly useful for separating water from dry soil or vegetated surfaces owing to the 
strong absorption by water in the near-infrared range, as shown in Figure 3.3. This was further 
confirmed by analyzing MSS band 5 (0.6-0.7 µm), band 7 and field spectral radiometer data 
along shoreline water-wet soil-dry soil transitions (Gupta and Banerji, 1985). The flood areas 
were delineated based on the sharp contrast between inundated regions and adjacent areas. The 
standing water areas appeared as dark blue to light blue depending upon the depth of water, 
while the receded water/wet areas appeared as dark to light gray (e.g., Figure 3.4). 

 

Figure 3.3. Reflectance spectra of some land surface species.  
 
Other studies have continued the methodology first developed with MSS, using Landsat TM and 
SPOT data (France and Hedges, 1986; Jensen et al., 1986; Watson, 1991; Blasco et al., 1992; 
Pope et al., 1992; Vila da Silva and Kux, 1992). The coarser resolution (ca. 1 km) sensors, such 
as the Advanced Very High Resolution Radiometer (AVHRR) aboard the NOAA series, has 
been successfully used for studying very large river floods (Ali et al., 1989; Barton and Bathols, 
1989; Gale and Bainbridge, 1990; Rasid and Pramanik, 1993).  
 
Sheng et al. (2001) summarized the spectral characteristics of the main features (i.e. water, 
vegetation, soil, and clouds) during floods at the observation scale of NOAA satellites. Although 
AVHRR data can be displayed in 3-channel color composites for visual analysis (flood/standing 
water absorbs infrared wavelengths of energy and appears as blue/black in the RGB composite 
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imagery), water body identification in AVHRR imagery evolved from qualitative visual 
interpretation to automatic quantitative extraction. The reflectance of AVHRR channel 2 (0.73-
1.1µm, similar to MSS band 7), the reflectance difference (CH2-CH1) and ratio (CH2/CH1) 
between AVHRR channel 2 and 1 (0.58-0.68 µm, similar to MSS band 5) are used to 
discriminate water from land if these parameters are less than the predetermined threshold 
values. 
 
The methods used in the literature to discriminate water from land can be summarized as the 
following: 
 

1) Channel 2 model (Lin 1989; Sheng et al., 1998) 

(3.1) 

 

Where CH2 is the reflectance of channel 2, and T0 is a threshold. 

2)  Differential model between channels 2 and 1 (Xiao and Chen, 1987) 

(3.2) 

 

3)  Ratio model of channels 2 and 1 (Sheng and Xiao, 1994) 

 

  (3.3) 

Sheng et al. (2001) found that the ratio (NIR/RED) image had a better discriminating capability 
than the difference (NIR-RED). 

 
4) NDVI model 

Normalized Difference Vegetation Index (NDVI): 
 

REDNIR

REDNIR
NDVI

+
−=       (3.6) 

 
Where NIR and RED stand for the spectral reflectance measurements acquired in the near-
infrared and red regions, respectively.  Domenikiotis et al. (2003) used NDVI to discriminate 
water from land.  
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Table 3.4. Vegetation classification according to typical NDVI values. 

Soil Type NDVI 

Dense vegetation 0.500 
Intermediate green 

vegetation 
0.140 

Sparse vegetation 0.090 

Bare soil 0.025 

Snow and ice -0.046 

Water surface -0.257 
 
It is apparent from its mathematical definition of the NDVI (Rouse et al., 1975 and Tucker, 
1979) that an area containing a dense vegetation canopy will tend to have positive values (say 
0.3 to 0.8), while standing water, which has a rather low reflectance in both visible (VIS: from 
0.4 to 0.7 µm) and near-infrared (NIR: from 0.7 to 1.1 µm) spectral bands (Figure 3.3 and Table 
3.4), results in very low positive or even slightly negative NDVI values.  

 
5) Brightness temperature model 

During daytime (Verdin, 1996): 

 

(3.4) 

 

During nighttime (Barton and Bathols, 1989): 

 (3.5) 

 

Where Tb11/12 is the brightness temperature of the 11 or 12 µm channels, and T0 is a threshold. 
 
The temperature model using AVHRR channel 4 or 5 (at 11 and 12 microns) brightness 
temperature usually works well in areas where floods resulting from snow melt, because there is 
usually a temperature discrepancy between water and land. However, it may not work with 
floods caused by heavy rainfall during rainy seasons in the summer when there is relatively low 
or no temperature difference between land and water.  

 
6) Surface temperature model 

Domenikiotis et al. (2003) also tried to use surface temperature to discriminate water from land 
surfaces.    
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Figure 3.4. MODIS 1km RGB (7, 2, 1) composite images in Midwest on June 10, 2008 before 
(upper) and on June 17 (middle) and June 19 (lower), 2008 after flooding. 

 
 
All of the above studies by using spectral features are based on the reflectance difference 
between water and land. Figure 3.5 shows the histograms in RED, such as the 
AVHRR/MODIS/SEVIRI CH1, the NIR, such as the AVHRR/MODIS/SEVIRI CH2, (CH2-
CH1), CH2/CH1, and NDVI.  In our study, we also include shortwave infrared or SWIR 
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centered at 1.61 µm, for example, the MODIS CH6, and Normalized Difference Water Index 
(NDWI). The NDWI (Gao, 1996) is a satellite-derived index from the NIR and Short Wave 
Infrared (SWIR) channels, NDWI= (NIR-SWIR) / (NIR+SWIR). MODIS has 2 bands in the 
SWIR region: band 5 (1230-1250 nm) and band 6 (1628-1652 nm) while band 2 represents the 
NIR region. Meanwhile, ABI also has two bands in the SWIR region, band 4 (1.3705 – 1.3855 
µm) and band 5 (1.58 – 1.64 µm). According to Gao (1996), NDWI is a good indicator for 
vegetation liquid water content and is less sensitive to atmospheric scattering effects than NDVI. 
Since ABI band 4 (1.38 µm) will only have 2 km resolution, so our NDWI will use ABI band 5 
(1.61 µm) or MODIS band 6, so our NDWI is more for standing water and may be a little 
different from that defined by Gao (1996) as (p(0.86 µm) - p(1.24 µm))/(p(0.86 µm + p(1.24 
µm)).These histograms further demonstrate that the stratification between Water and Land is 
pretty clear, and water can be separable from land by using these attributes, especially the CH2 
reflectance, the reflectance difference (CH2-CH1), and the reflectance ratio (CH2/CH1). 
  
Perhaps the greatest difficulty with visible/infrared sensors is their inability to image the Earth's 
surface under cloudy conditions (Rasid and Pramanik, 1993; Melack et al., 1994). For the 
purpose of determining maximum flood extent, this difficulty is somewhat mitigated by the fact 
that standing water can be mapped even after flood recession (Rango and Anderson, 1974; 
Deutsch, 1976). This effect can last from one to two weeks (Hallberg et al., 1973; Rango and 
Salomonson, 1974; Morrison and White, 1976; Salomonson, 1983).  
 

 

Figure 3.5. Histograms of MODIS surface reflectance at CH1, CH2, and CH6, (CH2-CH1), 
CH2/CH1, NDVI, NDWI, and Land/Water samples (Sun and Yu, 2010). 
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3.4.2 Algorithm Selection 
 
Upon simulating the top-of-atmosphere radiances/reflectance with the proxy MODIS data, we 
then conducted simulation analyses for the algorithm development.  
 
Surface type “water body” is assigned to the ‘Water’ class; all land surface types are assigned to 
class ‘Land’ or ‘Non-Water’. 
 
In order to find the best DT approach, several DT algorithms, including the J48graft or J48, 
which is based on the C4.5, originally proposed by Quinlan (1993), NBTree, which is a Naïve 
Bayes/Decision Tree hybrid (Kohavi, 1996), Random Tree, Random Forest (Breiman, 2001), 
REP Tree, BFTree, Decision Stump, FT (final tree), and CART (Classification and Regression 
Trees) (Breiman et al., 1984), are tested.  All of these methods are decision tree techniques which 
represent supervised machine learning approaches. A total 96,928 around the Mississippi river 
were input to the algorithms with a split test mode of 50% for training and the remaining 50% for 
test. A comparison of the test accuracy from different DT algorithms is listed in table 3.8. All the 
DT algorithms have a capability of discriminating the objects well. The J48graft/J48 or the C4.5 
and the CART got the best accuracy of about 97% for water identification.  However, if we want 
to further separate water into different water types, it becomes more difficult.  Table 3.9 
compares the accuracy for different water types from different DT algorithms. We can see that 
the accuracies for further separation of different water types are reduced. For water mixed with 
land, the accuracy is reduced to about 70% from the J48graft/J48 and random forest algorithms, 
and even to about 60% from other algorithms. For flooded areas, land is inundated by water, so 
water is usually mixed with vegetation, and/or trees, or even urban. Therefore, the accuracy 
requirement of 60% for GOES-R yes/no water identification product is reasonable. Since we 
wish to select an algorithm with the highest accuracy for water identification, as well as the 
easiest implementation, we selected the J48 or the C4.5 as our baseline algorithm. 

   
 
Table 3.8.  Comparison of DT Accuracy Rate (%) of Classified Instances from different types of 

Decision Tree Algorithms (Water and Land) (Sun and Yu, 2010) 
 
  Trees 
Types 

 
ADTree BFTree 

J48graft 
/J48 

Decision 
Stump 

FT 
Random 
Forest 

Random 
Tree 

REPTree CART NBTree 

Water 97.0 97.6 97.8 97.0 97.0 93.7 93.9 97.7 97.7 94.6 

Land 99.0 98.9 99.2 99.1 98.0 98.9 98.9 98.9 98.9 99.2 

Average 
98.7 

98.7 98.9 98.7 97.8 98.6 98.1 98.7 98.8 98.5 
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Table 3.9. Comparison of DT Accuracy Rate (%) of Classified Different Water types 

from different types of Decision Tree Algorithms (Water and Land) 
 
DT algorithms 
Water Types 

NBTree 
J48graft 

/J48 
Random 
Forest 

Random 
Tree 

REPTree CART BFTree FT 

Water Mixed 
with land 

69.6% 70.3% 76.8% 66.7% 63.8% 68.1% 66.7% 69.6% 

Wetland 62.4% 66.7% 63.1% 56% 58.2% 57.7% 56% 48.9% 

Pure River 
Water 

82.1% 82.1% 84.6% 73.2% 82.1% 82.4% 79.7% 80.5% 

Pure Lake 
Water 

80.7% 82% 84% 81.3% 79.3% 86.9% 82% 80% 

Average 73.4% 73.6% 75.95% 67.5% 71.7% 72% 70.4% 68.5% 

 
Finally, we emphasize that all the results discussed at this point assume perfect cloud detection. 
That is, all these results are for truly cloud clear pixels. Residual cloud effects in pixels classified 
as clear may add significant noise to the standing water retrievals. 

 

3.4.3 Mathematical Description of the FSW Algorithm 
 

All of the methods introduced above reflected one aspect of water. We propose to use data 
mining techniques, such as Decision Trees (DT) technique, to integrate all the above attributes, 
and at the same time, provide the threshold values and accuracy of algorithm performance. 
 
Compared to traditional statistical models, data mining methods such as DT analysis can help 
find hidden relationships among multiple attributes/parameters. DT is a classic prediction model 
to support decision making (Han, 2001) by converting complex data into relatively simple and 
direct viewing structure.  It has proven useful in other research areas, such as land cover/land use 
classification (Colstoun et al., 2000).  Xu et al. (2005) employed a decision tree regression 
approach to determine class proportions within a pixel. The DT was used for wetland composites 
from the ASTER data (Wei et al., 2008) and flood related land cover classification from multi-
temporal RADARSAT-1 SAR data (Parmuchi et al., 2002), in which the wetlands or flood were 
classified as surface cover types. The M5 model tree has been used to derive flood related 
discharge (Solomatine et al., 2004). Carroll et al. (2008) have been successful in deriving flood 
maps for the Midwest flood event with MODIS data using decision tree (DT) approach. These 
methods improved conventional spectrally based classification.   
 
Methods for analyzing and modeling data can be divided into two groups: “unsupervised 
learning” and “supervised learning.”  Unsupervised learning does not identify a target 
(dependent) variable, but rather treats all of the variables equally. In this case, the goal is not to 
predict the value of a variable but rather to look for patterns, groupings or other ways to 
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characterize the data that may lead to understanding of the way the data interrelates. Cluster 
analysis, correlation, factor analysis (principal components analysis) and statistical measures are 
examples of unsupervised learning.  
 
Supervised learning requires input data that has both predictor (independent) variables and a 
target (dependent) variable whose value is to be estimated. By various means, the process 
“learns” how to model (predict) the value of the target variable based on the predictor variables. 
Decision trees, regression analysis and neural networks are examples of supervised learning. If 
the goal of an analysis is to predict the value of a variable, then supervised learning is the 
recommended approach.  Our goal here is to model (predict) Standing Water and Flood, so we 
chose the supervised learning approach. 
 
 
In this study, we will use decision tree algorithm, which is a supervised machine leaning 
technique, for Flood/Standing Water identification, because unlike the previous studies using 
piecemeal data, DT algorithms can integrate all the useful predictors. We here take the C4.5 as 
an example to show how the DT works for classification. 
   
The C4.5 algorithm (Quinlan 1993) is a machine learning method based on decision tree 
induction (Han et al., 2001). The basic strategy is to select an attribute that will best separate the 
samples into individual classes by a measurement ‘Information Gain Ratio’.  The objective is to 
produce the most accurate separation with the least amount of information (Han et al., 2001).  
 
Formally, let S be the training set consisting of s data samples, and let s (Ci) be the number 
records in S that belong to class Ci (i=1, 2… m) out of m classes. The information needed to 
classify S is: 
 

                                        (3.7) 

  
Hence, the amount of information needed to partition S into {S1, S2…Sv} by attribute A (A has v 
distinct values) is: 
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The gain is computed as: 
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In this study, five attributes/parameters (CH2, CH3, CH3-CH2, CH3/CH2, and NDVI) and two 
classes (Water, Land) are integrated for water identification. 

2
1

( ) ( )
( ) log ( )

m
i i

i

s C s C
Info S

s s=

= −∑



 

 33

3.4.4 The GOES-R ABI Forward Simulations 
 

To test the accuracy and sensitivity of the above DT algorithm for the GOES-R ABI, we 
performed forward simulations using the latest version of (MODerate resolution atmospheric 
TRANsmission) (MODTRAN v4.3) to generate a comprehensive simulation dataset.   
 
The MODTRAN atmospheric radiative transfer model (Berk et al., 2000) has been widely used 
in satellite remote sensing studies for about three decades. It is a moderate spectral resolution 
model, up to cm-1 in frequency. We used MODTRAN version 4, reversion 3, released in 2008. 
The radiative transfer simulation procedure is illustrated in Figure 3.6. 
 

 

Figure 3.6. Radiative transfer simulation procedure. 
 

An angularly dependent atmospheric radiation model - MODTRAN is used for GOES-R forward 
simulations (Berk et al., 2000). The spectral range covered is from 0.2 µm (50000 cm-1) to 4 µm 
(2500 cm-1) with resolution 20 cm-1.   
 
In order to account for the wide range of different atmospheric and surface conditions, a large 
number of simulations for each season need to be performed with variations in:.   

• Geometry of the problem (solar zenith angle, viewing and azimuth angles) 
• Atmospheric conditions (profiles of ozone, water vapor, aerosols) 
• Surface conditions (spectral characteristics of the surface) 
• Characteristics of the instrument (spectral response of the satellite sensors); the latest 

GOES-R ABI spectral response functions were obtained from the University of 
Wisconsin (ftp://ftp.ssec.wisc.edu/ABI/SRF/) 

 
In order to represent the variability in solar geometry, the simulations are performed for 10 
different solar bins.   
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Table 3.5. Solar zenithangle  bins used for ABI forward simulations. 

Solar bin 1 2 3 4 5 6 7 8 9 10 

Solar zenith 
angle 
(degrees) 

12.9 30.8 41.2 48.3 56.5 63.2 69.5 75.5 81.4 87.2 

 
In order to obtain angularly dependent relationships the calculations are performed in 48 viewing 
bins - 6 zenith angles and 8 azimuth angles.  

Table 3.6. Satellite zenith angle bins used for ABI forward simulations. 
Zenith 

Bin 
1 2 3 4 5 6 

SZA 
(degrees) 

11.45 26.08 40.32 53.75 65.94 76.32 

 

Table 3.7. Azimuth angle bins used for ABI forward simulations. 
Azimuth 

Bin 1 2 3 4 5 6 7 8 

Azimuth 
angle 

(degrees) 
1.91 9.97 24.18 44.02 68.78 97.55 129.31 162.89 

 
Climatological profiles for temperature, water vapor, and ozone grouped into 4 seasons (5 
profiles for each season) are used in the simulations. These climatological profiles are derived 
from the TIGR profiles. For each profile, simulations are performed for 3 different visibilities 
(18, 23, and 28 km) in order to account for the variability of atmospheric aerosols. These create 
output files for 4 seasons x 10 solar zenith angles x 5 profiles x 3 visibilities x 3 albedo models 
(1800 cases total).  Fourteen UMD (Univ. of Maryland) IGBP  surface types were used plus an 
additional surface type (Snow/ice) and spectral library from the NASA JPL. Each surface type 
contains 1800 simulation cases. 
 
The narrowband outgoing radiances at the TOA are obtained by convoluting the spectral 
radiances with the response function of the specific instrument.   

 

(3.13) 

 

The radiance is then converted to reflectance.  We first determined the mean channel radiance by 
integrating over the sensor spectral response function (SRF).  The latest GOES-R ABI spectral 
response functions from the University of Wisconsin (ftp://ftp.ssec.wisc.edu/ABI/SRF/) are used. 
 
The channel radiances were then converted into corresponding reflectance. 
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3.4.5 Algorithm Challenges 
 

3.4.5.1 Cloud shadow effect 
 

Samples of water, vegetation, bare land, and cloud shadow are collected. Scatter points of these 
samples are shown in Figure 3.7, water is shown in red with vegetation in green, land in blue and 
cloud shadow in cyan. It can be seen clearly that the spectral signatures of cloud shadow are so 
close to those of water that cloud shadow may be easily confused and misclassified into water.  

 

Figure 3.7. Scatter plots of NDVI vs. MODIS CH3 (green: vegetation, red: water, cyan: 
cloud shadow, and blue: bare land).  

 

• Geometrical relationship for cloud shadow 
 
Cloud shadows always exist next to or around the clouds, so the projection of a cloud and its 
shadow can be assumed as in the same horizontal plane if the earth curvature is not considered. 
Thus the relationship for cloud shadow in a satellite image can be established based on the 
geometry relationship. Firstly the coordinates of cloud in an image plane can be calculated by the 
satellite geometry angles. Then with solar geometry angles, the place of cloud shadow can also 
be calculated accurately. The coordinates of cloud shadow (XD, YD) in an image plane can be 
described as the following: 
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(3.14) 
 
Where (Xc, Yc) is the cloud position in an image, θs (solar elevation angle) and θv (sensor 

elevation angle) have a range of 0ºto 90º
，φs (solar azimuth angle) and φv (sensor azimuth angle) 

have a range of 0ºto 360º, dx and dy is the spatial resolution in longitude and latitude of a satellite 
image respectively, and hc is the cloud top height. 
 

• Some results for cloud shadow detection 
 

Figure 3.8 shows an example of cloud shadow detection with the MODIS observations (Li 
et al., 2010). 
 

 
Figure 3.8. MODIS false color (726 RGB composite) image and the detected cloud (in 

white)/cloud mask (in black) distribution (07:55GMT, 02/04/2008). 
 

 

3.4.5.2 Anisotropic effect 
 

As shown in Figure 3.9, during early morning, (e.g., 08:00 UTC or 08:45 UTC), and late 
afternoon, the reflectance over vegetated area is very low, and makes it difficult to separate 
vegetation from water, or, in other words, the water body is confused with vegetation. If the 
reflectance of vegetation is as low as that of water, then vegetation may be misclassified into 
water, as shown in Figure 3.10 (upper, as the area marked with red oval). If ABI surface albedo 
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product can provide BRDF-corrected nadir surface reflectance, then anisotropic effect won’t be a 
problem to FSW detection. 

 

Figure 3.9. Three- channel composite images in the same area at different time on December 
26,2007. 
 

3.4.5.3 Sun glint contamination 
 

Sun glint occurs in imagery when the water surface orientation is such that the sun is directly 
reflected towards the sensor, and hence is a function of sea surface state, sun position and 
viewing angle (Figure 3.11).  A variety of glint correction methods have been developed for 
open ocean imaging and high resolution coastal applications, since solar glint is usually found 
over open ocean and coastal region (Kay et al., 2009). While our product is working with inland 
standing water identification, a land/see mask can help remove open ocean water. For inundated 
coastal area, it is found that the values of NDVI decreased dramatically in the glitter direction 
(Figure 3.12), providing an indication of surface water and a method to discriminate water under 
solar glint conditions (Vanderbilt, 2002). 
 

08:00 UTC 08:45 UTC 

11:00 UTC 15:00 UTC 
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Figure 3.10. Three- channel composite images in the same area at different time on 
December26, 2007. 
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Figure 3.11 Illustration of sun glint in an optical imagery, showing sun glint on the right hand 
side (upper), and sensor radiance plotted for 4 wavebands along the line marked in (upper) 

(from Kay et al., 2009) 
 

 
 
Figure 3.12. The NDVI of various cover types varied with view angle, being less than 0.3 
forinundated vegetation viewed in the specular direction. The four classes—
noninundatedvegetation 1, noninundated vegetation 2, inundated vegetation, and open water—
wereidentified with the aid of a classification performed in spectral space (from Vanderbilt et al., 
2002) 
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3.5 Algorithm Output 

Output of the Flood/standing water algorithm mainly contains two data arrays: the 
Flood/Standing Water identification, plus associated quality control flags, as described in Table 
3.8. 

Table 3.8 Algorithm output data. 
Name Type Description Dimension 

Flood/Standing 
Water class 

identification 
Byte 

Determined flood  identification for each pixel of the 
scanning mode as: 

1: Flood, 2: Non-Flood, 3: Water body without 
change, 4: Land without change, 200: Cloud, 100: 
Cloud Shadow, Snow/Ice: 50, and 255: Missing 
Value. 

grid (xsize, ysize) 

QC flags Byte Quality control flags for each pixel of the scanning mode: 
cloudiness, sensor data quality, etc. 

grid (xsize, ysize) 

  
Details of the 1-byte product Quality Control (QC) flags are listed in Table 3.9. The value of the 
entire 1 byte indicates the Quality Flag of the corresponding pixel. QF=0, the pixel of the product 
is good. QF>0, the pixel of the product is bad. 
 
 

Table 3.9. Definition of the FSW product Quality Control flags. 
Bit Flag Definition 
0 Availability 0: normal, 1: space or bad or missing pixel 
1 Cloud Mask 0: clear, 1: cloudy 
2 Cloud Shadow Mask 0: clear or NA, 1: cloud shadow 
3 Satellite Angle 0: normal, 1: satellite zenith angle>67º 
4 Solar Angle 0: normal, 1: solar zenith angle>67º 
5 Snow/Ice Mask 0: clear or NA, 1: snow or ice pixel 

 
In addition, the flood/standing water retrieval processing will also produce some metadata 
describing processing information (e.g. date/time stamps), as are listed in Table 3.10.  
 

Table 3.10. Metadata defined for the FSW product file. 

METEDATA TYPE DEFINITOIN 

DateTime common Date and time of swath beginning and swath end  

Bounding Box common 

Product resolution (nominal at nadir), number of rows 
and number of columns, byte per pixel, data type, byte 
order information, location of box relative to nadir (pixel 
space) 

Product Name common The ABI FSW 
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Ancillary Data  common 
Ancillary data name used to produce the product: version 
number, origin (where it was produced), name  

Satellite common GOES-R 
Instrument common Advanced Baseline Imager 
Altitude common Altitude  of the satellite  
Nadir common Pixel in the fixed grid 
Position common Latitude and longitude of the satellite position 
Projection common Grid Projection 
Mode common Type of Scan mode 
Version common Product version number 
Compression  common Data compression type (method) used 
Location  common Location where the product is produced 
Contact  common Contact information of the producer/scientific supporter 
document Common Citations to documents (i.e., ATBD) 
   
Product Unit FSW NON 

Statistics FSW 
Total number of FSW pixels, total number of Non-FSW 

pixels,  
Good pixels FSW Total number of “good” pixels (defined by QF) 
Total Pixels FSW Total number of “bad” pixels (defined by QF) 

Note: the definitions in italic words are determined at running. 
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4 TEST DATA SETS AND OUTPUTS 

4.1 Simulated and Proxy Input Data Sets 

The selected algorithm should be tested using real satellite data. Since the ABI data is not 
available during the development phase, we used data from other satellite sensors as proxies: the 
moderate resolution imaging spectroradiometer (MODIS) aboard the NASA Earth Observing 
System (EOS) Terra and Aqua platforms, and the Spinning Enhanced Visible and Infra-red 
Imager (SEVIRI) aboard the European Meteosat Second Generation (MSG) satellite. The data 
from these satellite sensors are considered as good proxies of ABI since they have visible (VIS) 
and near-infrared (NIR) channels similar to those on the ABI. Table 4.1 lists the sensor spectral 
specifications of the MODIS and MSG/SEVIRI, as well as ABI. 

Table 4.1. Similarity of MODIS and SEVIRI Imagers to ABI in channel spectrum. 

Sensor Channel No. Wavelength Center 
(µm) Bandwidth (µm) 

Spatial 
Resolution 

ABI 2 0.64 0.59 – 0.69 0.5 km  
3 0.86 0.8455 – 0.8845 1 km 

MODIS 1 0.645 0.620 – 0.670 0.25 km 
2 0.858 0.841 – 0.876 0.25 km 

SEVIRI 1 (VIS0.6) 0.635 0.56 ~ 0.71 3 km 
2 (VIS0.8) 0.81 0.74 ~0.88 3 km 

 

4.2. Algorithm Testing with the Simulated Data 

The C4.5 classification algorithm (Quinlan, 1993) was applied to the partial simulations as 
training data to build a decision tree: 
 

• Rule 1: 
•         CH3 <= 2.65562% 
•         ->  class Water  [99.5%] 
• Rule 2: 
•         CH3 > 2.65562% 
•         ->  class Land  [99.8%] 

 
• Evaluation on training data (10560 items): 
• Rule  Size  Error  Used  Wrong            Advantage 
•    1     1   0.5%   2880      0 (0.0%)      2880 (2880|0)  Water 
•    2     1   0.2%   7680      0 (0.0%)        0 (0|0)    Land 
 
• Tested 10560, errors 0 (0.0%)   << 
•           (a)  (b)      <-classified as 
•          ---- ---- 
•           2880           (a): class Water 
•                7680      (b): class Land 
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The number in brackets under the possibility value (%) in rectangles at each leaf equals the 
number of training instances which belong to that path in the tree. Meanwhile, each number is 
followed by the number of classification errors encountered in that particular path of the decision 
tree. The simulation results show that the near-infrared channel (CH3 for ABI) reflectance is the 
most effective attribute to separate water from land. When CH3 reflectance is less than a 
threshold value (2.66% here), water can be identified.  The total accuracy can reach over 99%. 
Since in our GOES-R ABI forward simulations, we didn’t include calibration error. The 
simulated data may be an ideal case and quite different from the real situation, the water are also 
pure water, thus the rules may be too simple, and the water classification accuracy is close to 
perfect, and may be unrealistic high.  

4.3 Output from Input data sets 

4.3.1 Test with the Proxy MODIS data 
 

In June 2008, unusually heavy rains from the 17th to the 19th in the upper Midwest triggered 
flooding throughout the upper Mississippi basin. EOS/MODIS channels 7, 2, and 1 RGB 
composite images show water bodies before and after flooding (Figure 4.1). 
 
As described in the introduction, several parameters, including MODIS channel 2 reflectance 
(CH2) and channel 1 reflectance (CH1), the difference (CH2-CH1) and ratio (CH2/CH1) between 
CH2 and CH1, NDVI, brightness temperature at 11 (MODIS channel 31) or 12 µm (MODIS 
channel 32), and surface temperature, can be used to identify water from land in previous studies.  
Which parameters or the combination of several parameters are the most effective? Moreover, 
how can the threshold values can be determined?  What is the accuracy? We propose to apply the 
Decision Tree method to identify Flood/Standing Water from the proxy MODIS measurements, 
because DT can integrate all the possible candidate predictors, at the same time, it can determine 
the threshold values, and give accuracy estimates.   

4.3.1.1 Data used for training 
 

• MODIS land cover type products (MCD12Q1) 
 

MODIS land cover type 1, which includes 17 International Geosphere-Biosphere 
Programme (IGBP) types: (0) water, (1) evergreen needleleaf forest, (2) evergreen 
broadleaf forest, (3) deciduous needleleaf forest, (4) deciduous broadleaf forest, (5) 
mixed forest, (6) closed shrublands, (7) open shrublands, (8) woody savannas, (9) 
savannas, (10) grasslands, (11) permanent wetlands, (12) croplands, (13) urban and 
built-up, (14) cropland/natural vegetation mosaic, (15) permanent snow and ice, (16) 
barren or sparsely vegetated.    

• MODIS 8-day composite surface reflectance, atmospheric correction products 
(MYD09A1) 

 
The MODIS Surface Reflectance product (MYD09A1) is computed from the MODIS 
Level 1B land bands 1, 2, 3, 4, 5, 6, 7, G (centered at 0.648 µm, 0.858 µm, 0.470 µm, 
0.555 µm, 1.24 µm, 1.64 µm, and 2.13 µm, respectively). The product is an estimate 
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of the surface reflectance for each band as it would have been measured at ground 
level after removing the atmospheric scattering and absorption.    

 

 
Figure 4.1. MODIS land cover at 1 km resolution and reflectance data at 0.648 µm (MODIS 
CH1) and 0.858 µm (MODIS CH2) on May 28, 2008 before flooding were used for training.    

 
• MODIS Terra+Aqua Nadir-BRDF (Bidirectional Reflectance Distribution Function) 

Adjusted Reflectance 16-Day L3 Global 500m SIN Grid V005 (MCD43A4). 
• MODIS cloud mask (MOD35) data 
 Cloud mask data is used to filter the cloudy conditions. 
 

4.3.1.2 Results from the MODIS training data 
 

The MODIS surface reflectance and land cover data before flooding on May 28, 2008 are used 
for training (Figure 4.2).  From Figure 4.2, we can see clearly that MODIS channel 2 reflectance 
(CH2) can ‘see’ water more clearly than channel 1 (CH1), particularly in the case of rivers. In 
order to perform DT analysis, surface reflectances (%) at 250m are aggregated to the same 1 km 
resolution as the land cover data. MODIS cloud mask (MOD35) data are used to filter clouds.  

 

MODIS IGBP 
surface types  

2008 

Reflectance at 0.648 
µm (MODIS CH1) 

 Reflectance at 0.858 
µm  (MODIS CH2) 
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Figure 4.4 shows an example of the tree structure derived from the J48 (or the C4.5) algorithm 
for the discrimination of water from land. The tree employs a case's attribute values to map it to a 
leaf, for designating one of the classes. The number in brackets following each leaf equals the 
number of training instances that are mapped to this leaf, and the second number after “/” in 
brackets (if it appears) is the number of instances that are misclassified to this leaf. A non-
integral number of cases may arise. This is because when the value of an attribute in the tree is 
not known, C4.5 splits the case and sends a fraction down each branch. The node in the upper 
level of the tree has a higher information gain ratio than in the lower level node in the 
classification. Therefore, as shown in Figure 4.4, attributes/parameters like the CH2-CH1, which 
appear at the root node of the tree, are more important than those at the lower level, such as the 
CH2 and NDVI, for identifying water from land.  
 

 
Figure 4.3. An example of decision tree structure derived from the MODIS observations with the 
C4.5 algorithm. 

 

 

Rulesets: 

Table 4.2. Rule sets generated from the C4.5 algorithm 
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Rule # CH1 CH2 (CH2-CH1) NDVI NDWI Class Accuracy 

19   >9.17   Land 99.9% 
18  >6.45  >0.5335  Land 99.8% 
15   >2.91 >0.228 <=0.2872 Land 99.6% 
9 <=1.02  <=2.91   Water 99.2% 
10   <=2.91 <0.1509  Water 99.0% 

12   <=2.91  >-0.2931 Water 97.7% 

Each rule consists of:  

• A rule number -- this is quite arbitrary and serves only to identify the rule. 
• The set of rules usually consists of at least one rule, which is used to classify unseen 

instances when no other rule applies. 
•  Every enumerated rule is composed of attribute-values and a resulting classification, 

followed by a percentage which represents the accuracy of that rule. 

For example, Rule 9: CH1≤1.02% and CH2<=2.91%, this rule is accurate 99.2% of the time for 
water classification. 
 
Rule 19: CH2-CH1 > 9.17%, this rule has accuracy of 99.9% for land classification. 

 
Confusion matrix: 
 

Table 4.3. The confusion matrix from the C4.5 test. 

 Classified Water (1) Classified Non-water(0) 

Validation Water (1) 10235 284 
Validation Non-water (0) 238 37707 
 

The node in the upper level of the decision tree has a higher information gain ratio than in the 
lower level node in the classification. Therefore, the reflectance difference (CH2-CH1), which 
appears at the root node of the decision tree, is more important than those in the lower level, such 
as the NDVI, NDWI, NDVI, NIR reflectance difference CH2 and visible reflectance CH1, or 
reflectance ratio CH2/CH1 between the MODIS CH2 and CH1, in identifying the water. 
 
The threshold values from the observation data are different from the simulation results, which 
show the CH2 reflectance is the only effective attribute, and the threshold value is 2.65562%. 
However, for real observation data, the rules are much more complicated: there are several 
effective attributes with multiple threshold values, and the total error is 1.6%, which equals an 
accuracy of 98.4%, and is lower than the simulation accuracy of over 99%.  Nevertheless, all 
algorithm performance tests at 1km resolution are well above the required accuracy of 60%. 
Remember that due to difference in central wavelength and spectral response functions of the 
visible/near infrared channels, algorithm threshold values applied for different satellite sensors 
may be different. 
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Considering that because the surface reflectance may have anisotropic effects, we tested the 
BRDF-adjusted nadir reflectance data (MCD43). The results show that over the same sample 
area, the attributes at the top of the output tree structure are the same. Figure 4.4 gives an 
example for samples around the Mississippi River, where the reflectance difference (CH2-CH1) 
is the most useful attribute to identify inland water from land. However, it is noted that the 
threshold values are different. For the BRDF-adjusted reflectance data, the ratio CH2/CH1 
appears at a lower level in the tree structure and plays a critical role to separate land from water, 
but may still be less important than the difference (CH2-CH1), which appeared at the top level of 
the tree structure (Sun and Yu, 2010). 

 

Figure 4.4. An example of Decision Tree structure derived from the BRDF adjusted surface 
reflectance data with the samples around the Mississippi River using the C4.5 algorithm. 

 

Reflectance in the NIR band (e.g., MODIS CH2) is largely affected by water types. Turbid water 
usually has a higher reflectance in the NIR band than clean water. When water is contaminated 
by blue-green alga, the NIR reflectance may increase significantly and become even much higher 
than the visible reflectance (e.g., MODIS CH1). Therefore, with the increase of water turbidity 
after flooding, the ratio CH2/CH1 may become more useful than the difference (CH2-CH1). 
Since we do not have land cover data for after-flooding situation, we tried to manually identify 
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water and land using the RGB composite images, and then match with the reflectance data. The 
output tree structure is too complicated to be completely shown in a figure. The results 
demonstrate that the CH2 reflectance appears at the top of the tree structure; meanwhile, the ratio 
does appear at a number of leaf nodes in the tree structure, sometimes even at the upper nodes 
than the difference (CH2-CH1), indicating that the ratio CH2/CH1 may be a more useful 
parameter to identify turbid water from land than the difference (CH2-CH1). 
 
It may need to note Figures 4.3 and 4.4 just show some examples of DT tree structures.  The real 
DT model may be more complicated, and can’t be even shown in one figure.  
 

4.3.1.3 DT training with additional Surface Temperature (ST) data  
 

 

Figure 4.5. MODIS land surface temperature over the training area on sate date (May 28, 
2008). 

 
From Figure 4.4, we can see water temperature is usually lower than land surface temperature.  If 
we include surface temperature as an additional attribute for the training, the results are shown 
below.  

 
Decision tree: 

 
CH2/CH1 <= 1.52025 : 
|   ST <= 289.24 : 
|   |   CH2/CH1 <= 1.23318 : Water (2584.8/18.5) 
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|   |   CH2/CH1 > 1.23318 : 
|   |   |   CH2-CH1 > 9.79 : Land (6.0/1.2) 
|   |   |   CH2-CH1 <= 9.79 : 
|   |   |   |   CH1 <= 1.65 : Water (24.0/1.3) 
|   |   |   |   CH1 > 1.65 : 
|   |   |   |   |   CH2-CH1 > 1.16 : Water (47.0/8.3) 
|   |   |   |   |   CH2-CH1 <= 1.16 : 
|   |   |   |   |   |   ST > 288.64 : Water (2.0/1.0) 
|   |   |   |   |   |   ST <= 288.64 : 
|   |   |   |   |   |   |   NDVI <= 0.141678 : Land (5.0/1.2) 
|   |   |   |   |   |   |   NDVI > 0.141678 : Water (3.0/2.1) 
|   ST > 289.24 : 
|   |   ST <= 295.28 : 
|   |   |   NDVI <= 0.0836654 : Water (540.0/95.6) 
|   |   |   NDVI > 0.0836654 : 
|   |   |   |   CH2-CH1 > 8.29 : Land (12.0/1.3) 
|   |   |   |   CH2-CH1 <= 8.29 : 
|   |   |   |   |   CH1 <= 1.23 : Water (14.0/1.3) 
|   |   |   |   |   CH1 > 1.23 : 
|   |   |   |   |   |   CH2-CH1 <= 0.42 : Land (11.0/2.5) 
|   |   |   |   |   |   CH2-CH1 > 0.42 : Water (138.0/53.5) 
|   |   ST > 295.28 : 
|   |   |   CH2 <= 2.04 : Water (52.0/18.9) 
|   |   |   CH2 > 2.04 : Land (198.0/71.2) 
CH2/CH1 > 1.52025 : 
|   CH2-CH1 > 7.63 : Land (110881.0/1558.6) 
|   CH2-CH1 <= 7.63 : 
|   |   CH2-CH1 <= 0.52 : Water (79.2/1.4) 
|   |   CH2-CH1 > 0.52 : 
|   |   |   ST > 293.4 : Land (2206.0/305.7) 
|   |   |   ST <= 293.4 : 
|   |   |   |   CH1 <= 4.54 : Land (332.0/162.8) 
|   |   |   |   CH1 > 4.54 : Water (107.0/36.9) 
 
Evaluation on training data (117242 items): 
 
         Before Pruning           After Pruning 
        ----------------   --------------------------- 
        Size      Errors   Size      Errors   Estimate 
 
          59  2250 (1.9%)     37  2257 (1.9%)    (2.0%)   << 
 
Rulesets: 
Rule 15: 
        CH2 <= 2.04% 
        CH2/CH1 <= 1.52025 



 

 51

        ->  class Water  [96.5%] 
 
Rule 13: 
        CH2-CH1 <= 8.29% 
        CH2/CH1 <= 1.52025 
        ST <= 295.28 K 
        ->  class Water  [94.5%] 
 
Rule 20: 
        CH2-CH1 <= 7.63% 
        ST <= 293.4 K 
        ->  class Water  [90.5%] 
Rule 22: 
        CH2-CH1 <= 7.63 % 
        CH2/CH1 > 1.52025 
        ST > 302.82 
        ->  class Land  [99.2%] 
 
Rule 25: 
        CH2-CH1 > 7.63 % 
        NDVI > 0.680956 
        ->  class Land  [99.1%] 
 
Rule 17: 
        CH2-CH1 > 5.22 
        ST > 295.28 
        ->  class Land  [98.8%] 
 
Rule 8: 
        CH2-CH1 > 9.79 
        ->  class Land  [98.7%] 
 
Rule 14: 
        CH2-CH1 > 8.29 
        ST > 289.24 
        ->  class Land  [98.7%] 
 
Default class: Land 
 
Evaluation on training data (117242 items): 
 
Rule  Size  Error  Used  Wrong            Advantage 
----  ----  -----  ----  -----            --------- 
  15     2   3.5%  2832     91 (3.2%)       20 (36|16)  Water 
  13     3   5.5%   588    100 (17.0%)      26 (57|31)  Water 
  20     2   9.5%   519    209 (40.3%)     101 (310|209)   Water 
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  22     3   0.8%  1047      6 (0.6%)        0 (0|0)    Land 
  25     2   0.9% 31918    271 (0.8%)        0 (0|0)    Land 
  17     2   1.2% 68892    906 (1.3%)        0 (0|0)    Land 
   8     1   1.3% 10157    325 (3.2%)        0 (0|0)    Land 
  14     2   1.3%   259     62 (23.9%)       0 (0|0)    Land 
 
Tested 117242, errors 2291 (2.0%)   << 
 
 
 
 

Table 4.4. The confusion matrix from the C4.5 test. 
 Classified Water (1) Classified Land (0) 

Validation Water (1) 3539 1891 
Validation Land  (0) 400 111412 

 
Since surface temperature may vary significantly with time, and spatial locations, thus including 
surface temperature will introduce complexity and instability to the algorithms. Therefore, we 
will not use surface temperature as an additional predictor or attribute. 
 
Antecedent precipitation should be a good attribute or predictor for Standing Water/Flood 
detection; however, currently no satellite precipitation product can be available at 1 km 
resolution.  
 

4.3.1.4 “Future prediction” with the rules obtained from training  
 
Figure 4.6 shows water (values as 1 in blue) and land (values as 0 in green) distributions 
determined by applying the tree structure (Figure 4.4) obtained from the training data before 
flooding on May 28, 2008:  

 
The “predicted” water bodies on June 14, 17, and 19, 2008 by applying the rules from the 
training (Table 2, Figure 4.4) are quite close to the qualitative visual image analysis as shown in 
Figure 3.4.  
 
Figure 4.7 shows the resulting maximum flood map based on differences between the water 
maps after flooding on June 17 and 19 and before flooding on June 14, 2008 as shown in Figure 
4.6.  
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Figure 4.6.  Spatial distributions of water (blue)/land (green) identifications over time   
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Figure 4.7.  The maximum flood extent map during the flood period (original water body is 
shown in blue, flood is shown in red, and land is shown in green). 

 
We applied these CH2 reflectance and NDVI predictors and threshold values from the training 
data at the Midwest of the United States on May 28, 2008 to “re-predict” the New Orleans 
flooding at the end of August in 2005 due to the landfall of Hurricane Katrina, which caused 
over 1500 deaths and damage exceeding $50 billion.  Figure 4.8 shows the MODIS channels 7, 
2, and 1 RGB composite images on August 30 and 31 after flooding, and August 27 before 
flooding.  Figure 4.9 shows the water identification map on these three days calculated by 
applying the CH2 reflectance and NDVI predictors and threshold values.  From these images, we 
can clearly detect the flood areas by comparing water fraction maps after flooding with those 
before flooding.  Figure 4.10 depicts the flood map as the difference in water detection values 
after flooding on August 31 and 30, with those before flooding on August 27.  The flooded 
regions are identified in red colors, the original water bodies are shown in blue color, while 
clouds are marked in grey color.  We can see very clearly that New Orleans and its surrounded 
areas were inundated on August 30 and 31, 2005 after Hurricane Katrina made landfall on 
August 29, 2005. 
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Figure 4.8. MODIS RGB composite images on August 27 (a) and 30 (b), 2008.   
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Figure 4.9. Water identification map on August 14 (upper) and 30 (lower), 2005 (water: blue; 
Green: Land or Non-water; white: clouds; cloud shadow: grey) 

 
 
 

(b) 

(a) 
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Figure 4.10. Flood map on August 30, 2005 shown as the water difference between August 30 
(after flooding) and August 27 (before flooding) (blue: original water body, red: flood, white: 
clouds, black: cloud shadow, and green: land). 
 

4.3.2 Test with the proxy SEVIRI data 
 
In the SEVIRI data test, several attributes, including SEVIRI channel 1 (CH1), channel 2 (CH2), 
the difference (CH2-CH1) and ratio (CH2/CH1) between CH2 and CH1, NDVI, are employed as 
predictors.   

4.3.2.1 Data used for training 
 
The reflectance value of CH1 and CH2 are obtained by converting the original digital count to 
radiances and then to reflectance. The difference, ratio and NDVI values are calculated in the 
preprocessing stage. Regions of interest are extracted manually according to 18-classes IGBP 
map, which all non-water classes are combined into land class. The ROIs acquired by different 
date and time are merged into a large training set with over 110000 records, and the tree structure 
from the training with the 5 bands SEVIRI data using the C4.5 algorithm (See Figure 4.11). 
Figure 4.11 shows that NDVI is the most useful predictor to separate water from land, and the 
ration and the CH1 are also used in the subsequent decision. It is worth noting that the tree 
structure is not fixed for different datasets. To ensure the discriminative power, the C4.5 
algorithm may select different leaf nodes and structure.   
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4.3.2.2 “Future prediction” with the rules obtained from tr aining  
 
The tree model from the training is applied to real SEVIRI observations. It has been discovered 
that if the solar zenith angle (SZA) is greater than 67º at 15:15 UTC, as shown in Figure 4.12, 
then misclassification may happen. The reason for this is the low illumination under large SZA 
conditions (Figure 4.12 lower).  For normal illumination conditions, such as at time of 12:00 
UTC (Figure 4.13), when SZA is less than 67º, then no obvious misclassification may happen. 
Therefore, the FSW product requirement under the SZA to be less than 67º is quite reasonable. 
In our product, the pixels with large zenith angles as well as large satellite zenith angles are 
masked out as no-data. 
 
We applied the standing water identification algorithm to a Mozambique flood case occurred on 
March 8, 2010. The tree structure only includes the difference of the reflectance values of the 
Ch1 and Ch2 as the predictor in the model, which is obtained from training data of flood cases. 
Fig 4.14 shows the MODIS composite images on Mar. 8 (Flood) and Mar. 12 (After flood), and 
Fig. 4.13 demonstrates the Flood/Standing Water identification map, where red pixels are flood. 
Comparison with the IGBP 18 classes land cover map merged into the reference water/land map 
is made to derive the flood pixels. Fig 4.15 is a zoomed view of the red box in Fig 4.13 to show 
the detailed flood coverage. Because the spatial resolution of the SEVIRI is much lower than the 
resolution of the MODIS, the identified flood coverage is much smaller than the coverage in 
MODIS composite images. 
 

 

Figure 4.11. An example of decision tree structure derived from the SEVIRI observations with 
the C4.5 algorithm. 
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Figure 4.12. Water (blue)/Land (green) derived from SEVIRI observations at 15:15 UTC 
on12/25/2007. 
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Figure 4.13 Flood (Red), Water (Blue) and Land (Green) derived from SEVIRI observations at 
12:00 UTC on 3/8/2010 
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Figure 4.14 MODIS RGB composite images on March 8 (upper) and March 12 (lower) 
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Figure 4.15 Flood map on 12:00 UTC, March 8, 2010. (original water body is shown in blue, 
flood is shown in red, land is shown in green and white pixels are cloud). 

 

4.4 Precision and Accuracy Estimates 

The accuracy of flood identification is determined by the accuracy of water body detection.  
Since there is no flood map available for MODIS and SEVIRI data now, we can easily think 
about using ground truth of land cover/land use classification to validate GOES-R FSW 
preliminary product: yes/no water identification. Figure 4.16 shows the comparison of 
water/non-water identification map from the MODIS observations with  the ground truth of 
water/land classification map. Some land pixels at the west area of the Great Lakes were 
misclassified into water, an error known as a commission error. The quantitative validation result 
is listed in Table 4.5.  The producer’s accuracy for water identification, which is equal to (100%-
omission) is 98.38%, the user’s accuracy, which is equal to 100%-commission rate, is 84.91%. 
The correction classification rate refers to producers’ accuracy.  The total accuracy for both 
water and non-water classification is 98.36% with kappa coefficient of 0.90.  For testing with the 
proxy SEVIRI data, we can see that some small water body cannot be detected (Figure 4.17), 
which may be due to the coarse resolution of the SEVIRI data (3km). The producer’s accuracy 
for water detection is 99.87%, and user’s accuracy is 99.88%, which is higher than 84.91% from 
the MODIS testing.  The higher accuracy rate is because less commission error occurred with the 
SEVIRI observations. The total accuracy for both water and non-water classification is 99.37% 
with kappa coefficient of 0.99 (Table 4.6). 

 



 

Figure 4.16. Water/land classificati
reflectance data on 05/20/2008 (

Figure 4.17. Water/land classification from the C4.5 DT algorit
11:45 UTC on 12/25/2007 (left) and Ground truth of water/land classification (right)
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. Water/land classification from the C4.5 DT algorithm with the MODIS surface 
reflectance data on 05/20/2008 (left) and ground truth of water/land classification (

 

 
 

. Water/land classification from the C4.5 DT algorithm with the SEVIRI data at
/25/2007 (left) and Ground truth of water/land classification (right)

 

 

 

 

 

  

on from the C4.5 DT algorithm with the MODIS surface 
) and ground truth of water/land classification (right) 

 

hm with the SEVIRI data at 
/25/2007 (left) and Ground truth of water/land classification (right) 
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Table 4.5. Validation results from the proxy MODIS data 

Validation Data: MODIS IGBP Land Cover Map (pixels) 

MODIS 
Classification 
05/20/2008 

 
 
 
 

 
Classified 

Non-Water (0) 
Classified 
Water (1) 

Validation 
Non-Water (0) 

5185738 9433 

Validation 
Water (1) 

85212 479617 

 Total pixels 5270950 489050 

 
Validation Data: MODIS IGBP Land Cover Map (%) 

MODIS 
Classification 
05/20/2008 

 
 
 
 

  Classified 
Non-Water (0) 

Classified 
Water (1) 

Producers 
Accuracy 

Validation 
Non-Water (0) 

98.38% 1.93% 98.38% 

Validation 
Water (1) 

1.62% 98.07% 98.07% 

 Users 
Accuracy 

99.82% 84.91%  

      
   Total 

Accuracy 
98.36% 

   Kappa 
Coefficient 

0.90 
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Table 4.6. Validation results from the proxy SEVIRI data 
Validation Data: SEVIRI IGBP Land Cover Map (pixels) 

SEVIRI 
Classification 
12/25/2007 

 
 
 
 

  Classified 
Non-Water (0) 

Classified 
Water (1) 

Validation 
Non-Water 

(0) 

2445680 29528 

Validation 
Water (1) 

3146 2698957 

 Total pixels 2448826 2728485 

 
Validation Data: SEVIRI IGBP Land Cover Map (%) 

SEVIRI 
Classification 
12/25/2007 

 
 
 

  Classified 
Non-Water 

(0) 

Classified 
Water (1) 

Producers 
Accuracy 

Validation 
Non-Water 

(0) 

99.87% 1.08% 99.87% 

Validation 
Water (1) 

0.13% 98.92% 98.92% 

 Users 
Accuracy 

98.81% 99.88%   

     
   Total 

Accuracy 
99.37% 

   Kappa 
Coefficient 

0.99 

 
 

4.5 Cloud Detection on GOES-R ABI Data  

Since we are going to use the GOES-R imager ABI data to detect Standing Water/Floods and the 
visible and infrared measurements cannot penetrate the clouds, accurate cloud filtering for the 
Imager data is critical for reliable results. Improved cloud treatment over snow in the shortwave 
satellite inference scheme has been developed (Li et al., 2007; Pinker et al., 2007) and is ready 
for use. This algorithm uses four GOES-8 channels, including visible channel 1 (0.67 µm, similar 
to ABI channel 2), middle infrared channel 2 (3.9 µm, similar to ABI channel 7), infrared 
channel 4 (10.7 µm, similar to ABI channel 14), and channel 5 (12.0 µm, similar to ABI channel 
15), and can be applied to detect cloud during both day and night. We can apply this algorithm 
for cloud screening.  
 
In general, most clouds cause enhanced reflectance and lower brightness temperatures (except 
the low level warm clouds) relative to the surface. Snow conditions can be identified from image 
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sequences, since snow pixels generally tend to be static from one hour to the next hour while 
clouds move. 
 
Second, if the 11 µm channel brightness temperature is too low (less than 250 K) then most 
likely the pixel is cloudy.  In addition, the absolute brightness temperature difference between 11 
µm and 12 µm channels, and 11 µm and 3.9 µm channels, should be in general less than 1.5 K 
for identifying the pixel as cloud-free. 
 
When the GOES-R ABI cloud mask data is available, we can use this product directly to filter 
the clouds. 
 
 

4.6 Error Budget 

The algorithm accuracy and product accuracy may be different for our FSW product.  
The algorithm accuracy will be determined by the accuracy of water classification.  The flood is 
identified by comparison of water classification during flood period with a normal reference 
water map. So the product accuracy should also primarily be determined by our preliminary 
product: water classification.  The accuracy for algorithm accuracy is compared at Table 4.7.   

  

Table 4.7. Comparison of Algorithm Accuracy Estimates with the Requirement 

 
With Proxy MODIS data 

 
With Proxy SEVIRI data Requirement 

98.07% 98.92% 60% 

Since there is no real ground truth for flood/standing water, the river flood forecasting and 
outlook from the NOAA/NWS and USGS may be used to evaluate our product accuracy for 
flood detection. But they are some kind of forecasting, not ground truth either. Moreover, they 
are usually for river discharge and surface elevation data in GIS vector format, how to convert 
these data to FSW detection is currently under progress. It is expected we can complete these 
evaluation/validation works at the time of 100% readiness.  
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5. PRACTICAL CONSIDERATIONS 

5.1  Numerical Computation Considerations 

We selected the C4.5 DT as our baseline algorithm because it is easily implemented and runs 
fast. Once the rules are obtained from the training, the Flood/Standing Water algorithm is 
mathematically simple and requires no complicated mathematical routines. In operations it will 
be robust and rapid with run time less than 1 minute in terms of the algorithm latency 
requirement (< 15 minutes, goal) using current computer power. There is no specific numerical 
computation requirement needed. For storage consideration, 1/0 (FSW/Non-FSW) values should 
be saved in one-byte integers. Quality flags for each pixel value should be bit-flag definitions, to 
minimize data storage.  
      

5.2 Programming and Procedural Considerations 

The Flood/Standing Water algorithm is a purely pixel-by-pixel algorithm, implemented in 
sequential mode. Because of the algorithm simplicity, it requires a small amount of code with 
basic mathematical routines. However, the Flood/Standing Water algorithm requires ancillary 
datasets such as cloud mask data, pre-trained rules and threshold values for identifying water 
bodies to the ABI pixel geolocation. The algorithm processing routines should be programmed in 
block functions to felicitate implementation. Although we selected a well-established and mature 
decision tree algorithm, since different satellite sensors may have different bandwidth, sensor 
response function, and calibration, to make the software flexible and applicable to different 
sensors, we developed our own codes.   
 

5.3 Configuration of Retrieval 

The primary adjustable parameters for the Flood/Standing Water retrieval are the rules and 
threshold values from the training data.  These threshold values should also be adjustable in 
order to optimize the algorithm, if needed, based on the results of post-launch validation. The 
source of ancillary datasets should be configurable for the best dataset. And finally, it should be 
noted that metadata used for the product may be modified, reduced and added during late phases 
of the product generation.    

5.4 Quality Assessment and Diagnostics 

The Flood/Standing Water detection will be assessed and monitored. First, a set of quality 
control flags will be generated with the yes/no FSW product for retrieval diagnostics. The quality 
control flags will indicate the retrieval conditions, including the water/non-water surfaces (i.e., 
ocean, coast, snow/ice, water etc.), etc. Since reflectance data for the visible channel is needed, 
Yes/No FSW maps will be generated only during the daytime.  
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5.5 Exception Handling 

The algorithm will handle exceptions through the quality control flags. In identifying the 
FSW/Non-FSW for each pixel, quality control flags from input datasets will be examined and 
skipped for bad sensor data (e.g., missing or no sensor data) or cloudy pixels (i.e., “cloud” and 
“probably cloud”). 
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6.  ASSUMPTIONS AND LIMITATIONS 

6.1 Performance 

 
First of all, because the Standing Water algorithm requires ancillary datasets, it is assumed that 
following data are available before the Water Fraction retrieval is performed: 

1) the ABI cloud mask; 
2) a high quality dynamic land surface reflectance dataset. 

 
Specifications regarding sensor performance are assumed to be those described in the MRD.  

6.2 Assumed Sensor Performance 

The algorithm described in this document performs in the visible and near-infrared spectral 
bands. It is applicable only during daytime on cloudless pixels. The retrieval accuracy may be 
reduced significantly near the edges of clouds. 

6.3 Pre-launch Product Improvements 

There are two general areas of prelaunch product improvement: better and more accurate 
validation and refinement of the FSW algorithm. 

6.3.1 Improved Validation Methods 
 
The difficulties of validating satellite retrievals against ground observations are well known and 
common to a lot of satellite products.  These include unknown error characteristics of algorithm 
and satellite retrievals and calibration uncertainties in the satellite sensor.  The only ground truth 
we can use for GOES-R yes/no FSW detection is the water/non-water classification merged from 
land cover/land use map, but this map is usually only available during normal conditions. During 
flooding period, the only available source is the river flooding forecast and outlook maps from 
the NOAA National Weather Services (NWS), as well as the map of river flooding from the 
USGS; however, these maps are not direct Flood/Standing Water identification maps, and are not 
the ground truth of flooding either.  Efforts to convert these river flooding maps into FSW 
identification maps to evaluate flood/standing water detection during flood period will be 
pursued in the pre-launch period. The method is expected to allow statistically significant error 
estimates to be made about each source of data, thereby helping specify the error in the satellite 
FSW. 
 
High resolution ASTER data from the Terra satellite and ETM+ data from the Landsat 
observations may be used in this effort.  A calibration/validation system is being developed and 
will be implemented first using real time MODIS and Meteosat SEVIRI data as proxies for the 
ABI.  FSW algorithms for the SEVIRI data as the proxy GOES-R ABI type imager will be used.  
In addition, studies of the GOES-R algorithm as applied to the proxy MODIS data will also be 
done. Knowledge gained from these studies will be used to improve the algorithm. 
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6.3.2 Algorithm Improvement 
 
As seen from our training results, the simulation data gave the simplest tree structure with the 
highest accuracy. This was achieved because the sensor noise and calibration errors were not 
included. If we applied the tree structure from the training with the simulation data, then it is 
possible for a large error to occur.  Similarly, the tree structure from the training with the proxy 
MODIS data may not be applied well to the proxy SEVIRI observations, because the calibration 
and band spectral properties are different between MODIS and SEVIRI. We will provide 
SEVIRI and MODIS test data simultaneously to AIT in the delivered software package. Instead 
of using threshold values directly, we use a pattern recognition method; therefore, the detailed 
tree structure and the specified threshold values in the tree are not very important. Our FSW 
software will read and parse the model file automatically. There will be no hard code for 
threshold values in our software.  The SEVIRI and MODIS data are just used as the proxy 
GOES-R ABI data, and our algorithm will process ABI data after launch. 
 
Due to the close spectral features of cloud shadow and water, the cloud shadow may be 
misclassified into water. We have already worked out an algorithm for cloud shadow detection.  
A second contributor to FSW uncertainty is the anisotropic effect of surface reflectance as seen 
from the observing geostationary satellite like the GOES-R. This effect arises due to high solar 
zenith angle (SZA) during early morning or late afternoon when the shaded surfaces are 
significantly darker than the sunlit surfaces, creating a low reflectance over land which may 
cause misclassification.  Although the majority of such conditions can be filtered out by working 
only for pixels with SZA less than 67 º, small number of cases may still be left for SZA greater 
than 60º. If the GOES-R albedo product can provide BRDF adjusted nadir reflectance data then 
this would cease to be a cause of concern to our FSW product.  For sun glint contamination, 
which may occur over the coastal area, we can firstly find the glint condition by using geometry 
method, and then we will be able to use NDVI to identify water under glint conditions.  All of 
these factors should be considered for the FSW algorithm and finding solutions to these 
problems is planned. 
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