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ABSTRACT

This Rainfall Potential Algorithm Theoretical Baglecument (ATBD) contains a high-
level description (including the physical basispafalgorithm for nowcasting 0-3 hour
rainfall accumulation at the pixel scale basedainfall rates derived from images taken
by the Advanced Baseline Imager (ABI) flown on @Geostationary Operational
Environmental Satellite-Series R (GOES-R) serieNatfonal Oceanic and Atmospheric
Administration (NOAA) geostationary meteorologisakellites. A brief overview of the
GOES-R observing system is followed by a more $jgetescription of the Rainfall
Potential algorithm, validation efforts, and pladneprovements.



1 INTRODUCTION

1.1 Purposeof This Document

The Rainfall Potential Algorithm Theoretical Baflscument (ATBD) provides a high-
level description of and the physical basis for grediction of rainfall accumulation
during the next 3 hours from images taken by theahded Baseline Imager (ABI) flown
on the GOES-R series of NOAA geostationary metegiohl satellites—or, more
precisely, from rainfall rates derived from curreartd previous ABI imagery. The
rainfall potential is produced as an EDR.

1.2 Who Should Use This Document

The intended users of this document are thoseesti in understanding the physical
basis of the algorithms and how to use the outpdhise algorithm in a manner that is
consistent with its underlying assumptions. Thiguwment also provides information
useful to anyone maintaining or modifying the anggialgorithm.

1.3 Inside Each Section

This document is broken down into the following maections.

* System Overview: Provides relevant details of the ABI and providedrief
description of the products generated by the algari

» Algorithm Description: Provides all the detailed description of the &l
including its physical basis, its input and itspoutt

* Test Data Sets and Output: Provides a description of the test data set wsed
characterize the performance of the algorithm amity of the data products. It
also describes the results from algorithm procgsssing simulated input data.

» Practical Considerations: Provides an overview of the issues involving
numerical computation, programming and procedugeslity assessment and
diagnostics and exception handling.

* Assumptionsand Limitations. Provides an overview of the current limitatioris o
the approach and gives the plan for overcomingetHigsitations with further
algorithm development.

1.4 Related Documents



This document currently does not relate to any rotdecument outside of the
specifications of the GOES-R Ground Segment Funatioand Performance
Specification (F&PS) and Missions Requirements Doeat (MRD) and to the ATBD
for the Rainfall Rate Algorithm.

1.5 Revision History

Version 0.0 of this document was created by Dr. é&bbJ. Kuligowski of
NOAA/NESDIS and its intent was to serve as a ddafivery to the GOES-R AWG
Algorithm Integration Team (AIT).

Version 0.1 of this document was created by Dr. é&kbbJ. Kuligowski of
NOAA/NESDIS and its intent was to accompany theiveey of the version 1.0
algorithm to the GOES-R AWG Algorithm Integratioedm (AIT).

Version 1.0 of this document was created by Dr. é&bbJ. Kuligowski of
NOAA/NESDIS and its intent was to accompany thaveey of the version 3 (80%)
algorithm to the GOES-R AWG Algorithm Integratioedm (AIT).



2 OBSERVING SYSTEM OVERVIEW

This section will describe the prod
and the requirements it places on

2.1 Products Generated

ucts generatethb ABI Rainfall Potential Algorithm
the sensor.

The Rainfall Potential Algorithm produces a fieltlpyedicted accumulation of rainfall
during the next 3 hours associated with the mastnidy available GOES imagery and
from previous images. In terms of the F&PS, itasponsible directly for the Rainfall

Potential product within the Hy:
Algorithm design calls for a quanti
grid as the 2-km ABI IR bands.

drology product dype. The Rainfall Potential
tative 3-houinfall accumulation in mm on the same
These productsiatended for use by operational

meteorologists and hydrologists for flood foreaagti There are no diagnostic products
aside from the official Rainfall Potential prodaetd accompanying quality flags.

Requirement Description

Requirement Value

Name

Rainfall Potential

User

GOES-R

Geographic Coverage

Full Disk

Temporal Coverage Qualifiers

Day and night

Product Extent Qualifier

Quantitative out to atsied0 degrees LZA or 60 degre
latitude—whichever is less—and qualitative beyond

Cloud Cover Conditions Qualifier

N/A

Product Statistics Qualifier

Over rainfall cases

Vertical Resolution N/A
Horizontal Resolution 2.0 km
Mapping Accuracy 1.0 km
Measurement Range 0 — 100 mm

Measurement Accuracy

5 mm for pixels designateciasg

Product Refresh Rate / Coveragés min

Time (Mode 3)

Refreshment Rate / Coverage Tir
(Mode 4)

me& min

Vendor Allocated Ground Latency

266 sec

Product Measurement Precision

5 mm for pixels aedeyl as raining

Table 1. F&PS Requirements for the Rainfall Potential allton.

Note that for pixels outside the ze
generated by the algorithm, but

nith angle atdude cutoffs, rainfall rates will still be
their use will becauraged and they will not be

validated for comparison against spec.
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2.2 Instrument Characteristics

The rainfall potential will be produced for eackkgdiobserved by the ABI with a latitude
of less than 60 degrees and a local zenith angl@) kelative to the satellite sub-point of
70 degrees. The Rainfall Potential algorithm doatsmake direct use of any ABI data,
but only uses current and previous output fromAB¢ Rainfall Rate Algorithm. Please
refer to the Rainfall Rate ATBD for additional dié&taon the ABI data used in the
Rainfall Rate retrievals.

11



3 ALGORITHM DESCRIPTION

This section will provide a complete descriptiontioé algorithm at the current level of
maturity (which will improve with each revision).

3.1 Algorithm Overview

The Rainfall Potential Algorithm derives a predictiof rainfall accumulation during the
next 0-3 hours on a pixel level in ABI imagery. eT&lgorithm first predicts future
rainfall rates based on extrapolation from curgerd previous ABI rainfall rates, and
then these instantaneous rates are accumulatetbtat@redicted rainfall during the next
3 hours. Additional details on the rainfall rat&riesval can be found in the Rainfall Rate
ATBD.

3.2 Processing Outline

The processing outline of the Rainfall Potentiag@ithm is summarized in the figure

below. The Rainfall Potential algorithm must ruman entire scan sector (typically the
full disk) of data since it identifies and extragi@s the motion of 2-D rainfall features in
the data. However, an exception may be made i$exibrs are used that completely
contain any precipitation features of interest; i@y precipitation features that are partly
outside the scan sector will not be handled cdgréxst the algorithm.

12
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Figure 1. High-level flowchart of the Rainfall Potential Adgthm, illustrating the main
processing sections.
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3.3 Algorithm Input

This section describes the input needed to comfhéerainfall potential. While the
rainfall potential is derived for each pixel, theopess of identifying, analyzing, and
extrapolating cloud features requires informatiamf an entire scan sector.

3.3.1 Primary Sensor Data

The Rainfall Potential algorithm does not direailge any sensor input but relies solely
on ABI Rainfall Rate Algorithm output; please ref@r the Rainfall Rate Algorithm
ATBD for details on the sensory input to that aitjon.

3.3.2 Ancillary Data

The Rainfall Potential Algorithm uses rainfall rafieom the current gridded ABI Rainfall
Rate product (dynamic ancillary data) and rainfates from the most recent previous
gridded ABI Rainfall Rate product (static ancillatgta).

3.4 Theoretical Description

The prediction of the evolution of rainfall frometfturrent ABI imagery over the next 3
hours (to produce the 3-hour predicted rainfalbl®)t requires the following steps:
identifying rainfall features of interest, determig the current motion of these features,
and then using this information to predict the fatmotion of these features. In addition,
an algorithm could also be used to determine tih@nges in the characteristics of these
features and then predict their future evolutiaowéaver, this latter step is not performed
in the current version of the algorithm describedhis ATBD, though such a capability
may be added in the future.

3.4.1 Physicsof the Problem

In a numerical weather prediction model, the prgaiicof the atmospheric state is not
generally treated on a feature-by-feature basisg, iadividual fields are not treated
individually: rather, the primitive equations a\&d at separately at each grid point and
the results together comprise the atmospheric stafeture time intervals. While this
approach is able to account for all of the poténtiluences on the future state of a
precipitation feature, it is also computationallyglily complex, and these models
themselves are based on assumptions and simpbfisathat are not always best suited
for precipitation forecasting. In fact, numerouwshers have demonstrated that a nowcast
based on extrapolation of rainfall features basedwrent and past characteristics can
produce forecasts that are more skillful than nucaémweather model forecasts for lead
times of less than a few hours. At longer leadeiymonlinear factors that cannot be
accounted for by simple extrapolation models becamee and more important and the
numerical model becomes the preferred method ofathnowcasting.

14



However, even though extrapolation techniques ianple relative to numerical weather
prediction models, there are still some difficidsues that need to be resolved. With
regard to feature identification, precipitationti@as are seldom well-organized, and it is
well-known that smaller-scale features have shdifiespans than larger-scale features.
Consequently, any feature identification technigueist successfully discriminate
relevant from irrelevant information in definingateres that will persist in time long
enough for forecasting purposes. ldeally, featlection will be performed at multiple
scales so that the different feature lifetimesiti¢ent scales will be accounted for in the
extrapolation process.

Another critical question is the determination @ature motion. Since the size and shape
of precipitation features typically change with &nit can be difficult to draw a confident
association between features on consecutive imagety confidently determine the
direction and speed of motion of the feature.

Finally, there is a question of how to use inforimaiabout feature properties and motion
to predict the location and properties of thesdufes at future time steps in order to
derive a 0-3 hour forecast of rainfall. The algun selected for nowcasting by the
Hydrology Algorithm Team will be described in fuethdetail with regard to its approach
to all three of these issues. Additional detadgdnd the scope of this document can be
found in Lakshmanan and Smith (2009) and Lakshmahah (2003, 2009).

3.4.1.1 Feature |ldentification

In general terms, a feature is defined as a regiaignificant rain rate that is separated
from other regions of significant rain rate. Fertmore, the group of pixels that comprise
a feature must meet selected criteria regardirgam intensity (rain rate). The specific
assignment of pixels to specific features is acdmingd via a clustering technique which
is initialized with clusters that are defined byes¢ed rain rate contours. Each pixel is
then assigned to a cluster based on two oppositeriar the difference in intensity

between the pixel of interest and the mean intgerdditthe potential matching cluster
(similarity), and the number of pixels neighboriihg pixel of interest that do not belong
to the potential matching cluster (proximity—or, mspecificially, non-proximity).

The algorithm also merges contiguous clusters shatha cluster becomes part of another
cluster if they are contiguous and if it's mearlass than that of the adjacent cluster;
however, merging is performed only if the combirdaster does not exceed the preset
maximum size value. The clustering is performedejpeated iterations until the cluster
assignments stop changing (maximum of 50 itera}ions

3.4.1.2 Feature Tracking

The first step in feature tracking is associatigniified features in consecutive images;
however, clustering methods are not guaranteedetify related pixels in consecutive
images since the clusters are determined indepépden each image. To avoid this
problem, the motion of a particular cluster israstied by matching a template containing

15



the cluster over the previous image and determitiegnean absolute error as a function
of position shift. The centroid of this mean alogelerror field is then computed, with
each point weighted by how much it differs from thlesolute minimum error (the
weighting is done to introduce a physically-reasd@aegree of smoothness and to avoid
influence from pixels that do not actually reprdseainfall and do not move—i.e.,
ground clutter in radar). The location of this trerd is the shift vector for that feature
from the previous image. This approach can belpnositic when cloud features change
significantly from one image to the next; howewde 15-minute time resolution of the
ABI should minimize the occurrence of such instance

Once the motion vectors have been identified fatheeature, the vector values are
assigned to the respective centroids of each featnd the remaining motion vectors for
the entire field are estimated via an inverse distasquared interpolation that is also
weighted by the size of the cluster. The resulipgtially distributed vector fields is then
smoothed using a Kalman filter.

3.4.1.3 Feature Advection and Evolution

Features are advected forward in time for one step along the derived wind fields, and
then the wind fields themselves are advected faiway one time step; this process
continues until the lead time reaches 3 h. Theeativersion of the algorithm does not
make any adjustments for growth or decay of pretipn features. This is because
previous experiments with linear prediction of mgty did not produce results that were
superior to a steady-state prediction. Howeveswtn and decay may be introduced if
suitably skilled algorithms can be developed.

3.4.1.4 Rainfall Accumulation

The current rainfall rates from the Rainfall Ratig@ithm plus the extrapolated rainfall

rates every 15 minutes out to a lead time of 3 fiaue used to produce a 0-3 hour
rainfall accumulation using the trapezoidal techeigi.e., every time period is equally
weighted except for the 0-hour and 3-hour rainfaiés, which receive half the weight of
the others.

3.5 Mathematical Description

3.5.1 Featureldentification

The first step in feature identification is to ap@ smoothing filter to the image to

enhance the capacity to identify significant rdinfieatures. Specifically, a non-recursive
median smoothing filter is applied; i.e., the vainesach pixel is replaced by the median
value in the 11x11 neighborhood surrounding thelpix

The initial feature identification is then perfordheia a region-growing scheme. After
guantizing the image (rounding all values to tharast integer value of mm/h), the
image is scanned and adjacent pixels with identicantized values are grouped into
initial clusters.

16



Those pixels not assigned to clusters via the regrowing scheme are then assigned to
the existing clusters based on a cost-minimizasicmeme. Each pixely is assigned a
cost of membership in each existing clusteand that cost is,i{k) expressed as:

E, (K) = Ad, (k) + Q= A)d, ,, (k). 1)

In this equationfny(K) is the intensity difference between the pixelkrest (at x,y)
and thek™ cluster and is defined as

iy (K) =11 = 1, )

where | is the mean intensity value for cluster k aggdis the intensity value (both in
mm/h) for the pixel at (x,y). Meanwhildgx(i) is the discontiguity measure and is given

by

d., ()= 3 [1-3(S) - k) 3)

ijONX,y

where Ny covers the 8 pixels adjacent to the pixel of ieserat (x,y) and(S;"-k) is
equal to 1 if the neighbor pixel of interest does lmelong to cluster k. That idg (i) is
simply the number of pixels adjacent to the pixElirderest (on 8 sides) that do not
belong to thek" cluster. These two criteria are weighted using wreight, and the
results have been shown to be relatively insemstowalues ranging from 0.2-0.8. (The
value used here is 0.4). Once the cost has beaputed for each cluster, the pixel is
assigned to the cluster with the lowest associenstl

This technique is applied to the quantized curramt rate field for multiple iterations
until the cluster assignments do not change; a maxi number of iterations (50) is
included to prevent an infinite loop in case of camvergence.

Once this cluster assignment step is completedhah $tep is preformed to eliminate

excessively small clusters. At three differentas#20, 160, and 480 pixels), the field is
examined for clusters below the threshold sizettiat scale. Clusters that are too small
are combined with their most intense neighbor. fiim@ result is actually three cluster

fields associated with three different scales.

3.5.2 FeatureTracking

After identifying the clusters in the current ralfrate image, the next step is to
determine how these features have moved sincerwiops image. Given the inexact
nature of the clustering, it has been found thatltster the previous image and then
associate clusters in the two images has not prtavée very robust. Consequently, the
clusters are used as a mask for comparing thesdipikel values between images.

17



Specifically, the pixels in the cluster in the @nt image are compared to the pixels in
the same cluster area in the previous image, angpaasons are also made for offsets
associated with speeds of 20 m/s or slower (whiohlevbe 9 pixels in 15-min imagery
at 2-km spatial resolution). The mean absolutere(MAE) for cluster k is then
computed for each pixel shift afx andAy:

1
MAE, (X +AX, y +Ay) == >[I, (X, ¥) = | _s (X + AX, y + Ay) 4)

k nyOk

where R is the number of pixels in cluster k andahd | represent pixel intensity
(value) in the current and previous images, respaygt The vertical bars represent
absolute difference.

A 2-D field of MAE is created for the offsets withthe aforementioned limit. Since this
field can be quite noisy, instead of using the mumn MAE value the centroid of the
offsets with MAE values within 20% is used as thsib for the motion vector.

Each vector now has a motion vector associated i#tin particular, with its centroid.
These cluster motion vectorg are used to create a spatially distributed fidldnotion
vectors u(x,y) via interpolation:

Zukwk (xy)

Z W, (X, ) ©)

u(x,y)=

where w(x,y) is the weight assigned to the motion vectiozloster k and is given as

W (x,y) = ®)
Iy -c

where N is the total number of pixels in cluster k and temominator is the Euclidean
distance between point (x,y) and the centrqidfcluster k; i.e.,

Iy =c = (x=%)2 +(y-y,,)? (7)

These motion vectors are computed at all threees¢2D, 160, and 480 pixels) for use in
feature advection. These motion vectors are tmeoothed over time using Kalman
filters. A separate Kalman filter is initialized @very pixel in the image and the motion
vector computed from the pair of images is treatethe “observed” quantity in the filter.
The Kalman filter state model is assumed to be afstant acceleration; i.e., in the
equation of motion:

vit+1)=ax*xv(t)+b (8)

18



where v is the velocityanc a the acceleration and b some constafite corresponding
Kalman filter stateequatiols are:

Xp1 = Ppxy + wy 9)
Zypq = Hypxyp + vy (10)

wherex is the truevelocity vector [v 0],the state transition mod@, is the current
estimate of the vector [a as per Equation (8)z is the observed velocitH; an identity
matrix andw,, andwv,, are nois whose covariances are estimated as part of the dfe
filter recursion. TheecursiveKalman filter updates are carried ag shown irFigure 2
and the resulting smoothed esate of velocity is assigned to the pixel

. . A
Enter prior estimate X5 and
its error covariance Py

Compute Kaiman gain:

/ K = P;HI (H*PLH{+ R} : \ f Zg, 2y,

Project ahead: Update estimate with
"x\; = h‘i\& A mﬁasurement z,:ﬂ
Py, =0,P; o7 +0Q, X, = X; + K, (z, - H, X))

A A
Ll v Xpatee
Compute error covariance / o %

for updated estimate:

Py = (1-K, HP,

Figure 5.8 Kalman filter loop.

Figure 2: Kalman Filter recursive loop for time smoothing rabtion vectors. Figur
from Brown and Hwang (199¢

It should be noted that Kalman filtering is usest@&ad of simple timaveraging because
it allows the weight of past observations to beemhgjent on their stability; i.e., if tt
velocity values are highly variable, they are givess weight in the smoothing and
current observation is given more weight, and vieesa

3.5.3 Feature Advection

This initial motion vector field is then used totepolate the rain rate field forward

one time step @ min for the ABI) by moving each pixel in the cemt rain rate imag
along the motion vector for a distance equivt to one time step.The specific motiot
vector used is a function of lead time: the finestle is used for lead timbelow 30
min; the secondinest for the30-90 minlead time window; and the coarsdor lead
times exceeding 90 minOnce this is doa, the motion vector field is used to advect
motion vectors forward in time by one time steddon the motion vector field for tr



next time step. Since divergence in the motiomd fiill cause some pixels in the
extrapolated rain rate image to not be filled irg motion vector field from the next time
step is used to project backward in time from theation of the empty pixels in the
extrapolated image to the corresponding pixel endiarrent rain rate image. Once this is
done, this entire procedure is repeated iteratiaelintervals corresponding to the time
step (15 min) out to 3 hours. Finally, the currandl extrapolated rainfall rates at 15-min
intervals are used to produce an accumulationiofai&for the entire 3-h period.

3.6 Algorithm Output

The final output of this algorithm is a field ofiméall accumulation for the next 3 hours at

the same spatial resolution as the ABI IR datas noduct will also be accompanied by

a grid of corresponding quality flags, with valug® for good data and non-zero for data
that are of questionable quality due to deficiemarethe input data, as described in Table
2:

Byte | Bit Flag Source Value
0 0 Rainfall Potential output RP 1=bad data; 0=0OK
1 Satellite zenith angle block-out | SDR 1=zenith angle>70° or
zone lat>60°; 0=0OK
2 Missing value for current rainfall RR 1=bad data; 0=0OK
rate
3 Current rain rate was >100 mm/hRR 1=rain rate >100 mm/h but
but truncated to 100 mm/h truncated at 100 mm/h;
O=rain rate <100 mm/h
4-7 | Not used

Table 2. Quality flags for the Rainfall Potential product.

In addition, a file of quality information fieldsilivbe output, consisting of a gridded file
containing the motion vector components at thaailization time followed by the motion
vector component and rainfall rate nowcasts ouB to lead time at 15-min intervals
(Table 3):

Grid Value Source | Type Units

1 U component of motion vector at| RP Real*4| m/s
min lead time

2 V component of motion vector at|RP Real*4| m/s
min lead time at O min lead time

3 Rainfall rate nowcast at 15-min lea®P Real*4| mm/h
time

4 U component of motion vector at 1RP Real*4| m/s
min lead time

5 V component of motion vector at 1:RP Real*4| m/s
min lead time
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6-8 Rainfall rate nowcast and motiofRRP Real*4| Same as above

vector components at 30 min lead time

9-38 | Rainfall rate nowcast and motipRP Real*4| Same as above

vector displacements at lead times| of
45, 60, 75, 90, 105, 120, 135, 150, 165,
and 180 min lead time

Table 3. Gridded quality information for the Rainfall Poteh product.

Finally, the metadata file will contain the infortizan listed below in Table 4:

Type Variable
Float | Total rain areangmber of pixelsinimage with rainfall potential > 1 mm)
Float | Total rain volumetdtal raininrain area, mm)
Long |Total number of pixels where retrieval wasiapted
Long |Number of QA flag value&
Long |Number of retrievals with QA flag value @l(bits set to 0)
String | Definition of QA flag value O:
Good Rainfall Potential retrieval
Long |Number of retrievals with QA flag bit O setlo
String | Definition of QA flag with bit O set to 1:
Bad Rainfall Potential retrieval
Long |Number of retrievals with QA flag bit 1 setto
String | Definition of QA flag with bit 1 set to 1:
Satellite zenith angle block-out zone
Long |Number of retrievals with QA flag bit 2 setto
String | Definition of QA flag with bit 2 set to 1:
Missing value for current rainfall rate
Long |Number of retrievals with QA flag bit 3 setlo
String | Definition of QA flag with bit 3 set to 1:
Current rain rate was >100 mm/h but truncated to 100 mmvh

Table 4. Metadata for the Rainfall Potential product.
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4 TEST DATA SETSAND OUTPUTS
4.1 Simulated/Proxy Input Data Sets

As stated previously, the Rainfall Potential algon does not directly use any satellite
data; rather, it uses as input current and prewotsut fields from the Rainfall Rate
algorithm. For the tests performed here, the R#liRfate algorithm used as input
SEVIRI observations as a proxy for ABI data, anehldled microwave rainfall estimates
as a calibration data source. The reader is sxférr the Rainfall Rate Algorithm
Theoretical Basis Document for additional detailgloese data sets and on the Rainfall
Rate algorithm.

4.2 Intermediate Outputs
4.2.1 Predicted Instantaneous Rainfall Fields

The Rainfall Potential algorithm was applied tat fRainfall Rate ouptut data from th& 6
through the 8 of January, April, July, and October 2005 to preeltorecasts of rainfall
rate every 15 minutes out to 3 hours. These fatsosere then summed into a final 3-
hour accumulation as shown in Figure 2.
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4.3 Algorithm Output Using Proxy Input Data Sets

4.3.1 Precisionsand Accuracy Estimates

To estimate the performance and accuracy of thaf&hPotential Algorithm, we will
have to compare the output against available rairgg data and radar data. However,
such data are very difficult to obtain over Eurepel Africa. Comparisons will be made
against Nimrod radar data over Western Europe, #@ngbossible, data from the
Convective and Orographically-induced Precipitat@indy (COPS) and NASA African
Monsoon Multidisciplinary Analyses (NAMMA) field ecapaigns over Europe and West
Africa, respectively. This section will presenethnalysis methodology for estimating
the precision and accuracy, followed by the quatm# results in terms of the F&PS
specifications.

4.3.1.1 Validation against Nimrod

Validation against the 5-km Nimrod composite ragraduct was performed for th&'5
9™ of April, July, and October 2005 (January 5-9 wasavailable from the BADC
archive). The coverage of these radars is illtestran Fig. 3.

[N T - | EEmE———
0 L 10 15 20 25 a0
AL COLA/IEES 3—h Rainfall Accumulation (mrm} ending 1800 UTS B July 2005

Figure 4. Coverage of Nimrod mosaic radar data.
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Figure 4 shows a scatterplot of the 3-hour raingatential compared to NIMROD data
over Western Europe for all 3 months. Note thastnod the data fall on the axes rather
than on the 1:1 line and that the algorithm exhibisignificant systematic dry bias, as
shown by the very small slope of the (dashed) belste (though the significant number
of points lying along the y-axis results in an @lebias of approximately 10.9%).
However, it should be emphasized that a pixel-glptomparison like this does not
account for location errors in a forecast; for amgte, some of the points lying on the x- or
y-axes would shift toward the 1:1 line if the eatlon were performed at a coarser
spatial resolution with less sensitivity to locatierrors. As Figb illustrates, the actual
forecast fields look better than what might be iiegblby the scatterplot.
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Figure 5. Scatterplot of Rainfall Potential values versusregponding Nimrod rainfall

accumulations for 5-9 April, July, and October 200Bhe solid line is the 1:1 line (i.e.,
forecast = observation); the dashed line is the-fiteéine between forecasts and
observations.
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The skill of the algorithm at discriminating raitifean be illustrated by the following
2x2 contingency table (Table 5):

Nimrod
<lmm >1mm
Rainfall <1mm 9,111,941 527,834
Potential >1mm 543,199 248,061

Table 5. Contingency table of rainfall discrimination sloll the Rainfall Potential
algorithm, using a rain / no rain threshold of 1 mm

This corresponds to a probability of detection (F@D32.0% and a false alarm rate
(FAR) of 68.6%. Again, the significant penaltiebérent in a pixel-by-pixel evaluation

The specific F&PS precision requirements for thenRé Potential algorithm is for a
precision of 5 mm. This means that for pixelswibnzero Rainfall Potential values, the
corresponding observed value should be within 5ohthe predicted value 68% of the
time. The evaluation of the Rainfall Potential against pinecision spec value is
illustrated in Fig. 6, which shows the cumulativstdbution function (CDF) of the
Rainfall Potential errors for 5-9 April, July, atttober separately and together. The
algorithm meets spec if the CDF curve reaches 8 %alue at a value lower than 5
mm, which as Fig. 6 shows is the case except ioli2ct
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It should be noted that since the validation watricted to westel Europe, the
validation statistics may not apply to the tropidisis not clear how the performance o
the tropics may differ; one the one hand, the ifpainfall Rate algorithm should ha
more skill in the tropics where convective rainfalpredorinant. On the other han
convective rainfall is also more variable in timelahus more difficult to nowca
skillfully using extrapolation methods. Validatiever the tropics will be needed
quantitatively determine the difference in perfono@but such data are difficult 1
obtain over the tropical portion of the SEVIRI coxge are:

4.3.2 Error Budget

The validation of the KMeans nowcasts driven by SCaMPR rain rates againiROD
data for the 8-9" of April, July, and October 2005 indicates * spec is generally beir
met over Western Europe. For reference, the acg@@ecification refers to bi—the
absolute difference between the mean observed aad sstimated rainfall. Tt
precision specification is the th percentile of the cumulativdistribution function o
absolute errors; i.e., 68% of the absolute foreeasts will be below the precision valt
It should be noted that these values exclude pixbreless than 1 mm of rainfi was
observed and thmiinfall potential was likewe less than 1 mnm an effort to reduc
statistical variability between relatively dry amet region. However, these statistics ¢
still based on a relatively small sample, so adddl baseline validation will k
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performed as more validation data become availalbl¢he meantime, the results of the
initial validation are summarized in Table 6.

Accuracy (mm/h) | Precision (mm/h) | No. of data points
Vs. NIMROD (Apr) 1.2 2.6 208,895
Vs. NIMROD (Jul) 0.2 3.0 179,835
Vs. NIMROD (Oct) 3.3 54 98,199
Vs. NIMROD (3 mo) 0.2 3.2 486,929
F&PS 5.0 50 | -

Table 6. Comparison of Rainfall Potential validation wittoposed F&PS.
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5 PRACTICAL CONSIDERATIONS

5.1 Numerical Computation Considerations

Both the current and immediately previous rainfate products must be available to run
the Rainfall Potential algorithm.

5.2 Programming and Procedural Considerations

Precipitation areas on the edge of a processin@mrregill be problematic for the
algorithm since their full shape and size cannokibewn when part of the area is not
within the field of view. Consequently, the rewa¢ should ideally be performed on the
full image in order to avoid these problems. Thecpssing of subregions is possible, but
great care must be taken to avoid errors inducegregipitation areas that overlap the
edges of these subregions.

The code for the Rainfall Potential Algorithm is @G+ and is highly modular to ease
upgrades.

5.3 Quality Assessment and Diagnostics

Quiality flags will be produced and provided alonigfvthe Rainfall Potential fields, with
non-zero values for pixels whose inputs have vatugside the acceptable range. These
flags are described in detail in Section 3.6.

The following procedures are recommended for diagmp the performance of the
Rainfall Potential Algorithm.
» Periodically image the individual test results @oK for artifacts or non-physical
behaviors.
» Periodically evaluate time series of bias stasst¢ the algorithm output to
identify any anomalous patterns.

5.4 Exception Handling

Quality control flags will be checked and inheritedm the input Rainfall Rate fields,
including bad data, missing sensor input data, amsking geolocation or viewing
geometry information—thus, the algorithm expects tlevel 1b processing to flag any
pixels with missing geolocation or viewing geometnjormation. Missing (negative)
values will be assigned to any pixel with qualggues or with any missing input values,
and the error flags mentioned in Section 5.3 wdbandicate these issues.

5.5 Algorithm Validation

Prior to launch, validation efforts will focus oupe and Africa using SEVIRI data as a
proxy for ABI given the previously discussed comseabout using simulated data for
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validation. The validation data will consist of iliod ground-based radar data over
Western Europe, plus any ground-based radar data freld campaigns that can be
obtained. This data set was described in Sectidri4. However, it should be noted
that ground-based radars have numerous well-dodechdimitations, so any ground-
based radar data used for validation will needetadrefully quality-controlled, including
comparisons between radar-derived rainfall toell and corresponding rain gauges to
determine the extent of such errors.

During the pre-launch period, validation tools vélso be developed: one set to be used
by operations to monitor the performance of the@tlgm in real time and identify any
anomalies; the second to be used by the algoriteueldpers to identify systematic
algorithm deficiencies, their possible causes, poténtial remedies. The former will be
transferred to the NOAA / NESDIS Office of Sat@liData Processing and Distribution
(OSDPD) while the latter will remain at STAR foreuby the algorithm developers and
collaborative partners outside STAR.

The post-launch phase will consist of monitoringhe product stream by OSDPD using
the aforementioned tools, and close collaboratietwben STAR developers and the
NOAA / NESDIS / OSDPD / Satellite Services Divisi(BSD) Satellite Analysis Branch
(SAB) analysts who are responsible for real-timenitaoing of satellite rainfall. They
will evaluate the performance of the algorithm bfstdm an “eyeball” perspective of day-
to-day performance and from the perspective ofesyatic behavior of the algorithm as
identified using the statistical tools. Modifiaats to the algorithm to address any
deficiencies will then be identified and implemehte

Additional details about algorithm validation caa found in the corresponding Product
Validation Plan.
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6 ASSUMPTIONSAND LIMITATIONS

The following sections describe the current limgas and assumptions in the current
version of the Probability of Rainfall Algorithm.

6.1 Performance

The following assumptions have been made in devsjopand evaluating the
performance of the Rainfall Potential AlgorithmheTfollowing list contains the current
assumptions and proposed mitigation strategies.

1. The region over which the algorithm has been evetugEurope and Africa)

represents the meteorological regimes found inWhestern Hemisphere, and
hence the validation statistics for that regionuaately reflect performance in the
GOES-R coverage region. (No mitigation possible).

The current and previous Rainfall Rate fields arailable and accurate. (Please
refer to the Rainfall Rate ATBD for details on rgdtion of the latter).

The algorithm implicitly assumes that no new preatpn cells will form during
the nowcast period. (Work with the Convective itibn product team to
incorporate their algorithm output into the RaihRdtential algorithm).

The algorithm implicitly assumes that the strengftthe rainfall features will not
change with time; i.e., there is no accounting fpowth and decay of
precipitation. (Investigate the improvement of tirewth / decay module in K-
Means, which is currently deactivated due to a ta@dknpact on skill.)

6.2 Assumed Sensor Performance

We assume the sensor will meet its current spatificss. However, the Rainfall
Potential Algorithm will be dependent on the foliogy instrumental characteristics
because of their effects on the antecedent RaiR&tk Algorithm.

The spatial variation predictors in the Rainfallt®&lgorithm will be critically
dependent on the amount of striping in the datateNhat this will affect the
retrieval only when any texture-related predict@se among the selected
predictors selected by the algorithm.

Unknown spectral shifts in some channels will affine brightness temperature
difference calculations and thus compromise somthefpredictors. Note that
this will affect the retrieval only when any brigless temperature differences are
among the predictors selected by the algorithm.
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6.3 Pre-Planned Product | mprovements

Work is being performed to optimize the tuning paeters in the algorithm that specific
minimum rainfall rate, minimum cluster size, anchest values. In addition, the

persistence of rainfall features as a functionaafles is being studied to determine if the
extrapolation of features as a function of scalelmaoptimized.
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