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ABSTRACT 
 
This Rainfall Potential Algorithm Theoretical Basis Document (ATBD) contains a high-
level description (including the physical basis) of an algorithm for nowcasting 0-3 hour 
rainfall accumulation at the pixel scale based on rainfall rates derived from images taken 
by the Advanced Baseline Imager (ABI) flown on the Geostationary Operational 
Environmental Satellite-Series R (GOES-R) series of National Oceanic and Atmospheric 
Administration (NOAA) geostationary meteorological satellites.  A brief overview of the 
GOES-R observing system is followed by a more specific description of the Rainfall 
Potential algorithm, validation efforts, and planned improvements.  
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1  INTRODUCTION 

1.1 Purpose of This Document 
 
The Rainfall Potential Algorithm Theoretical Basis Document (ATBD) provides a high-
level description of and the physical basis for the prediction of rainfall accumulation 
during the next 3 hours from images taken by the Advanced Baseline Imager (ABI) flown 
on the GOES-R series of NOAA geostationary meteorological satellites—or, more 
precisely, from rainfall rates derived from current and previous ABI imagery.  The 
rainfall potential is produced as an EDR. 

1.2 Who Should Use This Document 
 
The intended users of this document are those interested in understanding the physical 
basis of the algorithms and how to use the output of this algorithm in a manner that is 
consistent with its underlying assumptions.  This document also provides information 
useful to anyone maintaining or modifying the original algorithm.   

1.3 Inside Each Section 
 
This document is broken down into the following main sections. 
 

• System Overview: Provides relevant details of the ABI and provides a brief 
description of the products generated by the algorithm. 

 
• Algorithm Description: Provides all the detailed description of the algorithm 

including its physical basis, its input and its output. 
 
• Test Data Sets and Output: Provides a description of the test data set used to 

characterize the performance of the algorithm and quality of the data products.  It 
also describes the results from algorithm processing using simulated input data. 

 
• Practical Considerations: Provides an overview of the issues involving 

numerical computation, programming and procedures, quality assessment and 
diagnostics and exception handling.  

 
• Assumptions and Limitations: Provides an overview of the current limitations of 

the approach and gives the plan for overcoming these limitations with further 
algorithm development. 

1.4 Related Documents 
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This document currently does not relate to any other document outside of the 
specifications of the GOES-R Ground Segment Functional and Performance 
Specification (F&PS) and Missions Requirements Document (MRD) and to the ATBD 
for the Rainfall Rate Algorithm. 
 

1.5 Revision History 
 
Version 0.0 of this document was created by Dr. Robert J. Kuligowski of 
NOAA/NESDIS and its intent was to serve as a draft delivery to the GOES-R AWG 
Algorithm Integration Team (AIT). 
 
Version 0.1 of this document was created by Dr. Robert J. Kuligowski of 
NOAA/NESDIS and its intent was to accompany the delivery of the version 1.0 
algorithm to the GOES-R AWG Algorithm Integration Team (AIT). 
 
Version 1.0 of this document was created by Dr. Robert J. Kuligowski of 
NOAA/NESDIS and its intent was to accompany the delivery of the version 3 (80%) 
algorithm to the GOES-R AWG Algorithm Integration Team (AIT). 
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2 OBSERVING SYSTEM OVERVIEW 
 
This section will describe the products generated by the ABI Rainfall Potential Algorithm 
and the requirements it places on the sensor.  

2.1 Products Generated 
 

The Rainfall Potential Algorithm produces a field of predicted accumulation of rainfall 
during the next 3 hours associated with the most recently available GOES imagery and 
from previous images.  In terms of the F&PS, it is responsible directly for the Rainfall 
Potential product within the Hydrology product sub-type.  The Rainfall Potential 
Algorithm design calls for a quantitative 3-hour rainfall accumulation in mm on the same 
grid as the 2-km ABI IR bands.  These products are intended for use by operational 
meteorologists and hydrologists for flood forecasting.  There are no diagnostic products 
aside from the official Rainfall Potential product and accompanying quality flags. 

 

Requirement Description Requirement Value 
Name Rainfall Potential 
User GOES-R 
Geographic Coverage Full Disk 
Temporal Coverage Qualifiers Day and night 
Product Extent Qualifier Quantitative out to at least 70 degrees LZA or 60 degrees 

latitude—whichever is less—and  qualitative beyond 
Cloud Cover Conditions Qualifier N/A 
Product Statistics Qualifier Over rainfall cases 
Vertical Resolution N/A 
Horizontal Resolution 2.0 km 
Mapping Accuracy 1.0 km 
Measurement Range 0 – 100 mm 
Measurement Accuracy 5 mm for pixels designated as raining 
Product Refresh Rate / Coverage 
Time (Mode 3) 

15 min 

Refreshment Rate / Coverage Time 
(Mode 4) 

5 min 

Vendor Allocated Ground Latency 266 sec 
Product Measurement Precision 5 mm for pixels designated as raining 

Table 1. F&PS Requirements for the Rainfall Potential algorithm. 

Note that for pixels outside the zenith angle and latitude cutoffs, rainfall rates will still be 
generated by the algorithm, but their use will be discouraged and they will not be 
validated for comparison against spec. 
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2.2 Instrument Characteristics 
 
The rainfall potential will be produced for each pixel observed by the ABI with a latitude 
of less than 60 degrees and a local zenith angle (LZA) relative to the satellite sub-point of 
70 degrees.  The Rainfall Potential algorithm does not make direct use of any ABI data, 
but only uses current and previous output from the ABI Rainfall Rate Algorithm.  Please 
refer to the Rainfall Rate ATBD for additional details on the ABI data used in the 
Rainfall Rate retrievals. 
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3 ALGORITHM DESCRIPTION 
 
This section will provide a complete description of the algorithm at the current level of 
maturity (which will improve with each revision).  

3.1 Algorithm Overview 
 
The Rainfall Potential Algorithm derives a prediction of rainfall accumulation during the 
next 0-3 hours on a pixel level in ABI imagery.  The algorithm first predicts future 
rainfall rates based on extrapolation from current and previous ABI rainfall rates, and 
then these instantaneous rates are accumulated into total predicted rainfall during the next 
3 hours. Additional details on the rainfall rate retrieval can be found in the Rainfall Rate 
ATBD. 

3.2 Processing Outline 
 
The processing outline of the Rainfall Potential Algorithm is summarized in the figure 
below.  The Rainfall Potential algorithm must run on an entire scan sector (typically the 
full disk) of data since it identifies and extrapolates the motion of 2-D rainfall features in 
the data.  However, an exception may be made if subsectors are used that completely 
contain any precipitation features of interest; i.e., any precipitation features that are partly 
outside the scan sector will not be handled correctly by the algorithm. 
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Figure 1. High-level flowchart of the Rainfall Potential Algorithm, illustrating the main 
processing sections. 
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3.3 Algorithm Input 
 
This section describes the input needed to compute the rainfall potential.  While the 
rainfall potential is derived for each pixel, the process of identifying, analyzing, and 
extrapolating cloud features requires information from an entire scan sector. 

3.3.1 Primary Sensor Data 
 
The Rainfall Potential algorithm does not directly use any sensor input but relies solely 
on ABI Rainfall Rate Algorithm output; please refer to the Rainfall Rate Algorithm 
ATBD for details on the sensory input to that algorithm.  

3.3.2 Ancillary Data 
 
The Rainfall Potential Algorithm uses rainfall rates from the current gridded ABI Rainfall 
Rate product (dynamic ancillary data) and rainfall rates from the most recent previous 
gridded ABI Rainfall Rate product (static ancillary data). 

3.4 Theoretical Description 
 
The prediction of the evolution of rainfall from the current ABI imagery over the next 3 
hours (to produce the 3-hour predicted rainfall totals) requires the following steps: 
identifying rainfall features of interest, determining the current motion of these features, 
and then using this information to predict the future motion of these features.  In addition, 
an algorithm could also be used to determine time changes in the characteristics of these 
features and then predict their future evolution; however, this latter step is not performed 
in the current version of the algorithm described in this ATBD, though such a capability 
may be added in the future. 

3.4.1 Physics of the Problem 
 
In a numerical weather prediction model, the prediction of the atmospheric state is not 
generally treated on a feature-by-feature basis, and individual fields are not treated 
individually: rather, the primitive equations are solved at separately at each grid point and 
the results together comprise the atmospheric state at future time intervals.  While this 
approach is able to account for all of the potential influences on the future state of a 
precipitation feature, it is also computationally highly complex, and these models 
themselves are based on assumptions and simplifications that are not always best suited 
for precipitation forecasting.  In fact, numerous authors have demonstrated that a nowcast 
based on extrapolation of rainfall features based on current and past characteristics can 
produce forecasts that are more skillful than numerical weather model forecasts for lead 
times of less than a few hours.  At longer lead times, nonlinear factors that cannot be 
accounted for by simple extrapolation models become more and more important and the 
numerical model becomes the preferred method of rainfall nowcasting.  
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However, even though extrapolation techniques are simple relative to numerical weather 
prediction models, there are still some difficult issues that need to be resolved.  With 
regard to feature identification, precipitation features are seldom well-organized, and it is 
well-known that smaller-scale features have shorter lifespans than larger-scale features.  
Consequently, any feature identification technique must successfully discriminate 
relevant from irrelevant information in defining features that will persist in time long 
enough for forecasting purposes.  Ideally, feature detection will be performed at multiple 
scales so that the different feature lifetimes at different scales will be accounted for in the 
extrapolation process. 
 
Another critical question is the determination of feature motion.  Since the size and shape 
of precipitation features typically change with time, it can be difficult to draw a confident 
association between features on consecutive images, or to confidently determine the 
direction and speed of motion of the feature. 
 
Finally, there is a question of how to use information about feature properties and motion 
to predict the location and properties of these features at future time steps in order to 
derive a 0-3 hour forecast of rainfall.  The algorithm selected for nowcasting by the 
Hydrology Algorithm Team will be described in further detail with regard to its approach 
to all three of these issues.  Additional details beyond the scope of this document can be 
found in Lakshmanan and Smith (2009) and Lakshmanan et al. (2003, 2009). 

3.4.1.1 Feature Identification 
 
In general terms, a feature is defined as a region of significant rain rate that is separated 
from other regions of significant rain rate.  Furthermore, the group of pixels that comprise 
a feature must meet selected criteria regarding size and intensity (rain rate).  The specific 
assignment of pixels to specific features is accomplished via a clustering technique which 
is initialized with clusters that are defined by selected rain rate contours.  Each pixel is 
then assigned to a cluster based on two opposing criteria: the difference in intensity 
between the pixel of interest and the mean intensity of the potential matching cluster 
(similarity), and the number of pixels neighboring the pixel of interest that do not belong 
to the potential matching cluster (proximity—or, more specificially, non-proximity). 
 
The algorithm also merges contiguous clusters such that a cluster becomes part of another 
cluster if they are contiguous and if it’s mean is less than that of the adjacent cluster; 
however, merging is performed only if the combined cluster does not exceed the preset 
maximum size value.  The clustering is performed in repeated iterations until the cluster 
assignments stop changing (maximum of 50 iterations).

3.4.1.2 Feature Tracking 
 
The first step in feature tracking is associating identified features in consecutive images; 
however, clustering methods are not guaranteed to identify related pixels in consecutive 
images since the clusters are determined independently for each image.  To avoid this 
problem, the motion of a particular cluster is estimated by matching a template containing 
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the cluster over the previous image and determining the mean absolute error as a function 
of position shift.  The centroid of this mean absolute error field is then computed, with 
each point weighted by how much it differs from the absolute minimum error (the 
weighting is done to introduce a physically-reasonable degree of smoothness and to avoid 
influence from pixels that do not actually represent rainfall and do not move—i.e., 
ground clutter in radar).  The location of this centroid is the shift vector for that feature 
from the previous image.  This approach can be problematic when cloud features change 
significantly from one image to the next; however, the 15-minute time resolution of the 
ABI should minimize the occurrence of such instances. 
 
Once the motion vectors have been identified for each feature, the vector values are 
assigned to the respective centroids of each feature and the remaining motion vectors for 
the entire field are estimated via an inverse distance squared interpolation that is also 
weighted by the size of the cluster.  The resulting spatially distributed vector fields is then 
smoothed using a Kalman filter. 

3.4.1.3 Feature Advection and Evolution 
 
Features are advected forward in time for one time step along the derived wind fields, and 
then the wind fields themselves are advected forward by one time step; this process 
continues until the lead time reaches 3 h.  The current version of the algorithm does not 
make any adjustments for growth or decay of precipitation features.  This is because 
previous experiments with linear prediction of intensity did not produce results that were 
superior to a steady-state prediction.  However, growth and decay may be introduced if 
suitably skilled algorithms can be developed. 

3.4.1.4 Rainfall Accumulation 
 
The current rainfall rates from the Rainfall Rate Algorithm plus the extrapolated rainfall 
rates every 15 minutes out to a lead time of 3 hours are used to produce a 0-3 hour 
rainfall accumulation using the trapezoidal technique; i.e., every time period is equally 
weighted except for the 0-hour and 3-hour rainfall rates, which receive half the weight of 
the others. 

3.5 Mathematical Description 

3.5.1 Feature Identification 
The first step in feature identification is to apply a smoothing filter to the image to 
enhance the capacity to identify significant rainfall features.  Specifically, a non-recursive 
median smoothing filter is applied; i.e., the value in each pixel is replaced by the median 
value in the 11x11 neighborhood surrounding the pixel.
 
The initial feature identification is then performed via a region-growing scheme.  After 
quantizing the image (rounding all values to the nearest integer value of mm/h), the 
image is scanned and adjacent pixels with identical quantized values are grouped into 
initial clusters. 
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Those pixels not assigned to clusters via the region growing scheme are then assigned to 
the existing clusters based on a cost-minimization scheme.  Each pixel xy is assigned a 
cost of membership in each existing cluster k, and that cost is Exy(k) expressed as: 
 

).()1()()( ,, kdkdkE xycxymxy λλ −+=  (1) 

 
In this equation, dm,xy(k) is the intensity difference between the pixel of interest (at x,y) 
and the kth cluster and is defined as 
 

xykxym Ikd −= µ)(,  (2) 

 
where µk is the mean intensity value for cluster k and Ixy is the intensity value (both in 
mm/h) for the pixel at (x,y).  Meanwhile, dc,xy(i) is the discontiguity measure and is given 
by 
 

( )( )∑
∈

−−=
yNxij

n
ijxyc kSkd

,
, 1)( δ  (3) 

 
where Nxy covers the 8 pixels adjacent to the pixel of interest at (x,y) and δ(Sij

n-k) is 
equal to 1 if the neighbor pixel of interest does not belong to cluster k.  That is, dc,xy(i) is 
simply the number of pixels adjacent to the pixel of interest (on 8 sides) that do not 
belong to the kth cluster.  These two criteria are weighted using the weight λ, and the 
results have been shown to be relatively insensitive to values ranging from 0.2-0.8.  (The 
value used here is 0.4).  Once the cost has been computed for each cluster, the pixel is 
assigned to the cluster with the lowest associated cost. 
 
This technique is applied to the quantized current rain rate field for multiple iterations 
until the cluster assignments do not change; a maximum number of iterations (50) is 
included to prevent an infinite loop in case of nonconvergence. 
 
Once this cluster assignment step is completed, a final step is preformed to eliminate 
excessively small clusters.  At three different scales (20, 160, and 480 pixels), the field is 
examined for clusters below the threshold size for that scale.  Clusters that are too small 
are combined with their most intense neighbor.  The final result is actually three cluster 
fields associated with three different scales. 

3.5.2 Feature Tracking 
 
After identifying the clusters in the current rainfall rate image, the next step is to 
determine how these features have moved since the previous image.  Given the inexact 
nature of the clustering, it has been found that to cluster the previous image and then 
associate clusters in the two images has not proven to be very robust.  Consequently, the 
clusters are used as a mask for comparing the shifted pixel values between images. 
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Specifically, the pixels in the cluster in the current image are compared to the pixels in 
the same cluster area in the previous image, and comparisons are also made for offsets 
associated with speeds of 20 m/s or slower (which would be 9 pixels in 15-min imagery 
at 2-km spatial resolution).  The mean absolute error (MAE) for cluster k is then 
computed for each pixel shift of ∆x and ∆y: 
 

( )∑
∈

∆− ∆+∆+−=∆+∆+
kny

ttt
k

k yyxxIyxI
n

yyxxMAE ,),(
1

),(  (4) 

 
where nk is the number of pixels in cluster k and It and It-∆t represent pixel intensity 
(value) in the current and previous images, respectively.  The vertical bars represent 
absolute difference. 
 
A 2-D field of MAE is created for the offsets within the aforementioned limit.  Since this 
field can be quite noisy, instead of using the minimum MAE value the centroid of the 
offsets with MAE values within 20% is used as the basis for the motion vector. 
 
Each vector now has a motion vector associated with it—in particular, with its centroid.  
These cluster motion vectors uk are used to create a spatially distributed field of motion 
vectors u(x,y) via interpolation: 
 

( )
∑

∑
=

k
k

k
kk

yxw

yxwu

yxu
),(

),(
,  (5) 

 
where wk(x,y) is the weight assigned to the motion vector of cluster k and is given as 
 

k

k
k cxy

N
yxw

−
=),(  (6) 

 
where Nk is the total number of pixels in cluster k and the denominator is the Euclidean 
distance between point (x,y) and the centroid ck of cluster k; i.e., 
 

22 )()(
kk cck yyxxcxy −+−=−               (7) 

 
These motion vectors are computed at all three scales (20, 160, and 480 pixels) for use in 
feature advection.  These motion vectors are then smoothed over time using Kalman 
filters.  A separate Kalman filter is initialized at every pixel in the image and the motion 
vector computed from the pair of images is treated as the “observed” quantity in the filter.  
The Kalman filter state model is assumed to be of constant acceleration; i.e., in the 
equation of motion:  
 
��� � 1� � � 	 ���� � 
 (8) 
 



 

 

where v is the velocity and
Kalman filter state equation
 
��
� � ���� � ��  
��
� � ���� � ��  
 
where x is the true velocity
estimate of the vector [a b
matrix and �� and �� are noise
filter recursion. The recursive 
and the resulting smoothed estim
 

Figure 2: Kalman Filter recursive loop for time smoothing of motion vectors. Figure 
from Brown and Hwang (1996).

 
It should be noted that Kalman filtering is used instead of simple time 
it allows the weight of past observations to be dependent on their stability; i.e., if the 
velocity values are highly variable, they are given less weight in the smoothing and the 
current observation is given more weight, and vice versa.

3.5.3 Feature Advection
 
This initial motion vector field is then used to extrapolate the rain rate field forward by 
one time step (15 min for the ABI) by moving each pixel in the current rain rate image 
along the motion vector for a distance equivalen
vector used is a function of lead time: the finest scale is used for lead times 
min; the second-finest for the 
times exceeding 90 min.  
motion vectors forward in time by one time step to form the motion vector field for the 
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and a the acceleration and b some constant.  T
equations are: 

velocity vector [v 0], the state transition model 
b] as per Equation (8).  z is the observed velocity, 

are noise whose covariances are estimated as part of the Kalman 
recursive Kalman filter updates are carried out as shown in 

and the resulting smoothed estimate of velocity is assigned to the pixel.

Kalman Filter recursive loop for time smoothing of motion vectors. Figure 
Brown and Hwang (1996). 

It should be noted that Kalman filtering is used instead of simple time 
it allows the weight of past observations to be dependent on their stability; i.e., if the 
velocity values are highly variable, they are given less weight in the smoothing and the 
current observation is given more weight, and vice versa. 

Feature Advection 

This initial motion vector field is then used to extrapolate the rain rate field forward by 
5 min for the ABI) by moving each pixel in the current rain rate image 

along the motion vector for a distance equivalent to one time step.  The specific motion 
vector used is a function of lead time: the finest scale is used for lead times 

finest for the 30-90 min lead time window; and the coarsest 
.  Once this is done, the motion vector field is used to advect the 

motion vectors forward in time by one time step to form the motion vector field for the 

.  The corresponding 

(9) 
(10) 

the state transition model �� is the current 
is the observed velocity, �� an identity 

whose covariances are estimated as part of the Kalman 
as shown in Figure 2 

. 

 

Kalman Filter recursive loop for time smoothing of motion vectors. Figure 

It should be noted that Kalman filtering is used instead of simple time averaging because 
it allows the weight of past observations to be dependent on their stability; i.e., if the 
velocity values are highly variable, they are given less weight in the smoothing and the 

This initial motion vector field is then used to extrapolate the rain rate field forward by 
5 min for the ABI) by moving each pixel in the current rain rate image 

The specific motion 
vector used is a function of lead time: the finest scale is used for lead times below 30 

lead time window; and the coarsest for lead 
e, the motion vector field is used to advect the 

motion vectors forward in time by one time step to form the motion vector field for the 
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next time step.  Since divergence in the motion field will cause some pixels in the 
extrapolated rain rate image to not be filled in, the motion vector field from the next time 
step is used to project backward in time from the location of the empty pixels in the 
extrapolated image to the corresponding pixel in the current rain rate image.  Once this is 
done, this entire procedure is repeated iteratively at intervals corresponding to the time 
step (15 min) out to 3 hours.  Finally, the current and extrapolated rainfall rates at 15-min 
intervals are used to produce an accumulation of rainfall for the entire 3-h period.

3.6 Algorithm Output 

The final output of this algorithm is a field of rainfall accumulation for the next 3 hours at 
the same spatial resolution as the ABI IR data. This product will also be accompanied by 
a grid of corresponding quality flags, with values of 0 for good data and non-zero for data 
that are of questionable quality due to deficiencies in the input data, as described in Table 
2: 

 
Byte Bit Flag Source Value 
0 0 Rainfall Potential output RP 1=bad data; 0=OK 
 1 Satellite zenith angle block-out 

zone 
SDR 1=zenith angle>70° or 

lat>60°; 0=OK 
 2 Missing value for current rainfall 

rate 
RR 1=bad data; 0=OK 

 3 Current rain rate was >100 mm/h 
but truncated to 100 mm/h 

RR 1=rain rate >100 mm/h but 
truncated at 100 mm/h; 
0=rain rate <100 mm/h 

 4-7 Not used   

Table 2. Quality flags for the Rainfall Potential product. 

 

In addition, a file of quality information fields will be output, consisting of a gridded file 
containing the motion vector components at the initialization time followed by the motion 
vector component and rainfall rate nowcasts out to 3 h lead time at 15-min intervals 
(Table 3): 

 
Grid Value Source Type Units 
1 U component of motion vector at 0 

min lead time 
RP Real*4 m/s 

2 V component of motion vector at 0 
min lead time at 0 min lead time 

RP Real*4 m/s 

3 Rainfall rate nowcast at 15-min lead 
time 

RP Real*4 mm/h 

4 U component of motion vector at 15 
min lead time 

RP Real*4 m/s 

5 V component of motion vector at 15 
min lead time 

RP Real*4 m/s 
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6-8 Rainfall rate nowcast and motion 
vector components at 30 min lead time 

RP Real*4 Same as above 

9-38 Rainfall rate nowcast and motion 
vector displacements at lead times of 
45, 60, 75, 90, 105, 120, 135, 150, 165, 
and 180 min lead time 

RP Real*4 Same as above 

Table 3. Gridded quality information for the Rainfall Potential product. 

 
Finally, the metadata file will contain the information listed below in Table 4: 
 

Type Variable 
Float Total rain area (number of pixels in image with rainfall potential > 1 mm) 
Float Total rain volume (total rain in rain area, mm) 
Long Total number of pixels where retrieval was attempted 
Long Number of QA flag values: 6 
Long Number of retrievals with QA flag value 0 (all bits set to 0) 
String Definition of QA flag value 0: 

Good Rainfall Potential retrieval 
Long Number of retrievals with QA flag bit 0 set to 1 
String Definition of QA flag with bit 0 set to 1: 

Bad Rainfall Potential retrieval 
Long Number of retrievals with QA flag bit 1 set to 1 
String Definition of QA flag with bit 1 set to 1: 

Satellite zenith angle block-out zone 
Long Number of retrievals with QA flag bit 2 set to 1 
String Definition of QA flag with bit 2 set to 1: 

Missing value for current rainfall rate 
Long Number of retrievals with QA flag bit 3 set to 1 
String Definition of QA flag with bit 3 set to 1: 

Current rain rate was >100 mm/h but truncated to 100 mm/h 

Table 4. Metadata for the Rainfall Potential product. 



 

 22

4 TEST DATA SETS AND OUTPUTS 

4.1 Simulated/Proxy Input Data Sets 
 
As stated previously, the Rainfall Potential algorithm does not directly use any satellite 
data; rather, it uses as input current and previous output fields from the Rainfall Rate 
algorithm.  For the tests performed here, the Rainfall Rate algorithm used as input 
SEVIRI observations as a proxy for ABI data, and blended microwave rainfall estimates 
as a calibration data source.  The reader is referred to the Rainfall Rate Algorithm 
Theoretical Basis Document for additional details on these data sets and on the Rainfall 
Rate algorithm.

4.2 Intermediate Outputs 

4.2.1 Predicted Instantaneous Rainfall Fields 
 
The Rainfall Potential algorithm was applied to test Rainfall Rate ouptut data from the 6th 
through the 9th of January, April, July, and October 2005 to produce forecasts of rainfall 
rate every 15 minutes out to 3 hours.  These forecasts were then summed into a final 3-
hour accumulation as shown in Figure 2. 
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Figure 3. Rainfall Potential for the 3 hours beginning 1500 UTC 8 July 2005 derived 
from rain rates based on SEVIRI data.
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4.3 Algorithm Output Using Proxy Input Data Sets  

4.3.1 Precisions and Accuracy Estimates 
 
To estimate the performance and accuracy of the Rainfall Potential Algorithm, we will 
have to compare the output against available rain gauge data and radar data.  However, 
such data are very difficult to obtain over Europe and Africa.  Comparisons will be made 
against Nimrod radar data over Western Europe, and, if possible, data from the 
Convective and Orographically-induced Precipitation Study (COPS) and NASA African 
Monsoon Multidisciplinary Analyses (NAMMA) field campaigns over Europe and West 
Africa, respectively.  This section will present the analysis methodology for estimating 
the precision and accuracy, followed by the quantitative results in terms of the F&PS 
specifications. 

4.3.1.1 Validation against Nimrod 

Validation against the 5-km Nimrod composite radar product was performed for the 5th-
9th of April, July, and October 2005 (January 5-9 was not available from the BADC 
archive).  The coverage of these radars is illustrated in Fig. 3. 

 

Figure 4. Coverage of Nimrod mosaic radar data. 
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Figure 4 shows a scatterplot of the 3-hour rainfall potential compared to NIMROD data 
over Western Europe for all 3 months.  Note that most of the data fall on the axes rather 
than on the 1:1 line and that the algorithm exhibits a significant systematic dry bias, as 
shown by the very small slope of the (dashed) best-fit line (though the significant number 
of points lying along the y-axis results in an overall bias of approximately 10.9%).  
However, it should be emphasized that a pixel-by-pixel comparison like this does not 
account for location errors in a forecast; for instance, some of the points lying on the x- or 
y-axes would shift toward the 1:1 line if the evaluation were performed at a coarser 
spatial resolution with less sensitivity to location errors.  As Fig. 5 illustrates, the actual 
forecast fields look better than what might be implied by the scatterplot. 

 
Figure 5. Scatterplot of Rainfall Potential values versus corresponding Nimrod rainfall 
accumulations for 5-9 April, July, and October 2005.  The solid line is the 1:1 line (i.e., 
forecast = observation); the dashed line is the best-fit line between forecasts and 
observations. 
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Figure 6. Plot of Nimrod radar (top) and corresponding 3-hour rainfall potential (bottom) 
for the 3 h beginning 1800 UTC 7 April 2005. 
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The skill of the algorithm at discriminating rainfall can be illustrated by the following 
2x2 contingency table (Table 5): 
 

 Nimrod 
< 1 mm > 1 mm 

Rainfall 
Potential 

< 1 mm 9,111,941 527,834 
> 1 mm 543,199 248,061 

Table 5. Contingency table of rainfall discrimination skill of the Rainfall Potential 
algorithm, using a rain / no rain threshold of 1 mm. 

 
This corresponds to a probability of detection (POD) of 32.0% and a false alarm rate 
(FAR) of 68.6%.  Again, the significant penalties inherent in a pixel-by-pixel evaluation  
 
The specific F&PS precision requirements for the Rainfall Potential algorithm is for a 
precision of 5 mm.   This means that for pixels with nonzero Rainfall Potential values, the 
corresponding observed value should be within 5 mm of the predicted value 68% of the 
time.  The evaluation of the Rainfall Potential against the precision spec value is 
illustrated in Fig. 6, which shows the cumulative distribution function (CDF) of the 
Rainfall Potential errors for 5-9 April, July, and October separately and together.  The 
algorithm meets spec if the CDF curve reaches the 68% value at a value lower than 5 
mm, which as Fig. 6 shows is the case except in October. 
 



 

 

Figure 7. Cumulative distribution function of rainfall potential errors (absolute value of 
observation minus forecast 
the 5th-9th of April, July, and October 2005, plus the CDF curve for all data combined

 
It should be noted that since the validation was restricted to western
validation statistics may not apply to the tropics.  It is not clear how the performance over 
the tropics may differ; one the one hand, the input Rainfall Rate algorithm should have 
more skill in the tropics where convective rainfall is predom
convective rainfall is also more variable in time and thus more difficult to nowcast 
skillfully using extrapolation methods.   Validation over the tropics will be needed to 
quantitatively determine the difference in performance, 
obtain over the tropical portion of the SEVIRI coverage area.

4.3.2 Error Budget 
The validation of the K-Means nowcasts driven by SCaMPR rain rates against NIMROD 
data for the 5th-9th of April, July, and October 2005 indicates that
met over Western Europe.  For reference, the accuracy specification refers to bias
absolute difference between the mean observed and mean estimated rainfall.  The 
precision specification is the 68
absolute errors; i.e., 68% of the absolute forecast errors will be below the precision value. 
It should be noted that these values exclude pixels where 
observed and the rainfall potential was likewis
statistical variability between relatively dry and wet regions
still based on a relatively small sample, so additional baseline validation will be 
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Cumulative distribution function of rainfall potential errors (absolute value of 
observation minus forecast accumulation) versus NIMROD data over Western Europe

of April, July, and October 2005, plus the CDF curve for all data combined

It should be noted that since the validation was restricted to western Europe, the 
validation statistics may not apply to the tropics.  It is not clear how the performance over 
the tropics may differ; one the one hand, the input Rainfall Rate algorithm should have 
more skill in the tropics where convective rainfall is predominant.  On the other hand, 
convective rainfall is also more variable in time and thus more difficult to nowcast 
skillfully using extrapolation methods.   Validation over the tropics will be needed to 
quantitatively determine the difference in performance, but such data are difficult to 
obtain over the tropical portion of the SEVIRI coverage area. 

Means nowcasts driven by SCaMPR rain rates against NIMROD 
of April, July, and October 2005 indicates that spec is generally being 

met over Western Europe.  For reference, the accuracy specification refers to bias
absolute difference between the mean observed and mean estimated rainfall.  The 
precision specification is the 68th percentile of the cumulative distribution function of 
absolute errors; i.e., 68% of the absolute forecast errors will be below the precision value. 
It should be noted that these values exclude pixels where less than 1 mm of rainfall

rainfall potential was likewise less than 1 mm in an effort to reduce 
statistical variability between relatively dry and wet regions. However, these statistics are 
still based on a relatively small sample, so additional baseline validation will be 

 

Cumulative distribution function of rainfall potential errors (absolute value of 
Western Europe for 

of April, July, and October 2005, plus the CDF curve for all data combined. 

Europe, the 
validation statistics may not apply to the tropics.  It is not clear how the performance over 
the tropics may differ; one the one hand, the input Rainfall Rate algorithm should have 

inant.  On the other hand, 
convective rainfall is also more variable in time and thus more difficult to nowcast 
skillfully using extrapolation methods.   Validation over the tropics will be needed to 

but such data are difficult to 

Means nowcasts driven by SCaMPR rain rates against NIMROD 
spec is generally being 

met over Western Europe.  For reference, the accuracy specification refers to bias—the 
absolute difference between the mean observed and mean estimated rainfall.  The 

distribution function of 
absolute errors; i.e., 68% of the absolute forecast errors will be below the precision value. 

less than 1 mm of rainfall was 
in an effort to reduce 

However, these statistics are 
still based on a relatively small sample, so additional baseline validation will be 
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performed as more validation data become available.  In the meantime, the results of the 
initial validation are summarized in Table 6. 
 
 Accuracy (mm/h) Precision (mm/h) No. of data points 
Vs. NIMROD (Apr) 1.2  2.6 208,895 
Vs. NIMROD (Jul) 0.2 3.0 179,835 
Vs. NIMROD (Oct) 3.3 5.4 98,199 
Vs. NIMROD (3 mo) 0.2 3.2 486,929 
F&PS 5.0 5.0 ----- 

Table 6. Comparison of Rainfall Potential validation with proposed F&PS. 
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5 PRACTICAL CONSIDERATIONS 

5.1 Numerical Computation Considerations 
 
Both the current and immediately previous rainfall rate products must be available to run 
the Rainfall Potential algorithm.  

5.2 Programming and Procedural Considerations 
 
Precipitation areas on the edge of a processing region will be problematic for the 
algorithm since their full shape and size cannot be known when part of the area is not 
within the field of view.  Consequently, the retrieval should ideally be performed on the 
full image in order to avoid these problems.  The processing of subregions is possible, but 
great care must be taken to avoid errors induced by precipitation areas that overlap the 
edges of these subregions. 
 
The code for the Rainfall Potential Algorithm is in C++ and is highly modular to ease 
upgrades. 

5.3 Quality Assessment and Diagnostics 
 
Quality flags will be produced and provided along with the Rainfall Potential fields, with 
non-zero values for pixels whose inputs have values outside the acceptable range.  These 
flags are described in detail in Section 3.6.   
 
The following procedures are recommended for diagnosing the performance of the 
Rainfall Potential Algorithm. 

• Periodically image the individual test results to look for artifacts or non-physical 
behaviors. 

• Periodically evaluate time series of bias statistics of the algorithm output to 
identify any anomalous patterns. 

5.4 Exception Handling 
 
Quality control flags will be checked and inherited from the input Rainfall Rate fields, 
including bad data, missing sensor input data, and missing geolocation or viewing 
geometry information—thus, the algorithm expects the Level 1b processing to flag any 
pixels with missing geolocation or viewing geometry information.  Missing (negative) 
values will be assigned to any pixel with quality issues or with any missing input values, 
and the error flags mentioned in Section 5.3 will also indicate these issues. 

5.5 Algorithm Validation 

Prior to launch, validation efforts will focus on Europe and Africa using SEVIRI data as a 
proxy for ABI given the previously discussed concerns about using simulated data for 
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validation.  The validation data will consist of Nimrod ground-based radar data over 
Western Europe, plus any ground-based radar data from field campaigns that can be 
obtained.  This data set was described in Section 4.2.1.1.  However, it should be noted 
that ground-based radars have numerous well-documented limitations, so any ground-
based radar data used for validation will need to be carefully quality-controlled, including 
comparisons between radar-derived rainfall total fields and corresponding rain gauges to 
determine the extent of such errors. 

During the pre-launch period, validation tools will also be developed: one set to be used 
by operations to monitor the performance of the algorithm in real time and identify any 
anomalies; the second to be used by the algorithm developers to identify systematic 
algorithm deficiencies, their possible causes, and potential remedies.  The former will be 
transferred to the NOAA / NESDIS Office of Satellite Data Processing and Distribution 
(OSDPD) while the latter will remain at STAR for use by the algorithm developers and 
collaborative partners outside STAR. 

The post-launch phase will consist of monitoring of the product stream by OSDPD using 
the aforementioned tools, and close collaboration between STAR developers and the 
NOAA / NESDIS / OSDPD / Satellite Services Division (SSD) Satellite Analysis Branch 
(SAB) analysts who are responsible for real-time monitoring of satellite rainfall.  They 
will evaluate the performance of the algorithm both from an “eyeball” perspective of day-
to-day performance and from the perspective of systematic behavior of the algorithm as 
identified using the statistical tools.  Modifications to the algorithm to address any 
deficiencies will then be identified and implemented. 

Additional details about algorithm validation can be found in the corresponding Product 
Validation Plan. 
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6 ASSUMPTIONS AND LIMITATIONS 
 
The following sections describe the current limitations and assumptions in the current 
version of the Probability of Rainfall Algorithm. 

6.1 Performance 
 
The following assumptions have been made in developing and evaluating the 
performance of the Rainfall Potential Algorithm.  The following list contains the current 
assumptions and proposed mitigation strategies. 
 

1. The region over which the algorithm has been evaluated (Europe and Africa) 
represents the meteorological regimes found in the Western Hemisphere, and 
hence the validation statistics for that region accurately reflect performance in the 
GOES-R coverage region. (No mitigation possible). 

2. The current and previous Rainfall Rate fields are available and accurate. (Please 
refer to the Rainfall Rate ATBD for details on mitigation of the latter).  

3. The algorithm implicitly assumes that no new precipitation cells will form during 
the nowcast period.  (Work with the Convective Initiation product team to 
incorporate their algorithm output into the Rainfall Potential algorithm). 

4. The algorithm implicitly assumes that the strength of the rainfall features will not 
change with time; i.e., there is no accounting for growth and decay of 
precipitation.  (Investigate the improvement of the growth / decay module in K-
Means, which is currently deactivated due to a lack of impact on skill.) 

6.2 Assumed Sensor Performance 
 
We assume the sensor will meet its current specifications.   However, the Rainfall 
Potential Algorithm will be dependent on the following instrumental characteristics 
because of their effects on the antecedent Rainfall Rate Algorithm. 

• The spatial variation predictors in the Rainfall Rate Algorithm will be critically 
dependent on the amount of striping in the data.  Note that this will affect the 
retrieval only when any texture-related predictors are among the selected 
predictors selected by the algorithm. 

• Unknown spectral shifts in some channels will affect the brightness temperature 
difference calculations and thus compromise some of the predictors.  Note that 
this will affect the retrieval only when any brightness temperature differences are 
among the predictors selected by the algorithm. 
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6.3 Pre-Planned Product Improvements 
 
Work is being performed to optimize the tuning parameters in the algorithm that specific 
minimum rainfall rate, minimum cluster size, and other values.  In addition, the 
persistence of rainfall features as a function of scale is being studied to determine if the 
extrapolation of features as a function of scale can be optimized. 
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